TensorFlow構建K-Means分類器
阿新 • • 發佈:2018-12-19
""" K-Means. Implement K-Means algorithm with TensorFlow, and apply it to classify handwritten digit images. This example is using the MNIST database of handwritten digits as training samples (http://yann.lecun.com/exdb/mnist/). Note: This example requires TensorFlow v1.1.0 or over. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.factorization import KMeans # Ignore all GPUs, tf random forest does not benefit from it. import os os.environ["CUDA_VISIBLE_DEVICES"] = "" # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) full_data_x = mnist.train.images # Parameters num_steps = 50 # Total steps to train batch_size = 1024 # The number of samples per batch k = 25 # The number of clusters num_classes = 10 # The 10 digits num_features = 784 # Each image is 28x28 pixels # Input images X = tf.placeholder(tf.float32, shape=[None, num_features]) # Labels (for assigning a label to a centroid and testing) Y = tf.placeholder(tf.float32, shape=[None, num_classes]) # K-Means Parameters kmeans = KMeans(inputs=X, num_clusters=k, distance_metric='cosine', use_mini_batch=True) # Build KMeans graph training_graph = kmeans.training_graph() if len(training_graph) > 6: # Tensorflow 1.4+ (all_scores, cluster_idx, scores, cluster_centers_initialized, cluster_centers_var, init_op, train_op) = training_graph else: (all_scores, cluster_idx, scores, cluster_centers_initialized, init_op, train_op) = training_graph cluster_idx = cluster_idx[0] # fix for cluster_idx being a tuple avg_distance = tf.reduce_mean(scores) # Initialize the variables (i.e. assign their default value) init_vars = tf.global_variables_initializer() # Start TensorFlow session sess = tf.Session() # Run the initializer sess.run(init_vars, feed_dict={X: full_data_x}) sess.run(init_op, feed_dict={X: full_data_x}) # Training for i in range(1, num_steps + 1): _, d, idx = sess.run([train_op, avg_distance, cluster_idx], feed_dict={X: full_data_x}) if i % 10 == 0 or i == 1: print("Step %i, Avg Distance: %f" % (i, d)) # Assign a label to each centroid # Count total number of labels per centroid, using the label of each training # sample to their closest centroid (given by 'idx') counts = np.zeros(shape=(k, num_classes)) for i in range(len(idx)): counts[idx[i]] += mnist.train.labels[i] # Assign the most frequent label to the centroid labels_map = [np.argmax(c) for c in counts] labels_map = tf.convert_to_tensor(labels_map) # Evaluation ops # Lookup: centroid_id -> label cluster_label = tf.nn.embedding_lookup(labels_map, cluster_idx) # Compute accuracy correct_prediction = tf.equal(cluster_label, tf.cast(tf.argmax(Y, 1), tf.int32)) accuracy_op = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Test Model test_x, test_y = mnist.test.images, mnist.test.labels print("Test Accuracy:", sess.run(accuracy_op, feed_dict={X: test_x, Y: test_y}))
結果如下:
Step 1, Avg Distance: 0.341471 Step 10, Avg Distance: 0.221609 Step 20, Avg Distance: 0.220328 Step 30, Avg Distance: 0.219776 Step 40, Avg Distance: 0.219419 Step 50, Avg Distance: 0.219154 Test Accuracy: 0.7127