1. 程式人生 > >leetcode120. Triangle/63. Unique Paths II

leetcode120. Triangle/63. Unique Paths II

題目描述

給定一三角形,找出從頂部到底部的最小路徑和。每步只能移動到改行下面的向量數字。

例子

[ [2], [3,4], [6,5,7], [4,1,8,3] ]

從頂到底部的最小路徑和為11(2+3+5+1=11)

思想 (DP) dp[i][j]表示到第i行第j列的最小路徑和

解法 常規 - DP。複雜度:時間O(n^2),空間O(n^2)。

class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
n = len(triangle) dp = [[0] * (i+1) for i in range(n)] # dp[i][j] --- row-i, col-j dp[0][0] = triangle[0][0] for i in range(1, n): for j in range(i+1): if j == 0: dp[i][j] = dp[i-1][j] + triangle[i][j] elif
j == i: dp[i][j] = dp[i-1][j-1] + triangle[i][j] else: dp[i][j] = min(dp[i-1][j-1], dp[i-1][j]) + triangle[i][j] return min(dp[-1])

優化 - 減少不必要的邊界:行逆序 )

class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
n = len(triangle) dp = [[0] * (i+1) for i in range(n)] # dp[i][j] --- row-i, col-j dp[-1] = triangle[-1] for i in range(n-2, -1, -1): for j in range(i+1): dp[i][j] = min(dp[i+1][j], dp[i+1][j+1]) + triangle[i][j] return dp[0][0]

(空間優化1)-trick 在原輸入上直接操作,空間O(1)。

class Solution(object):
    def minimumTotal(self, triangle):
        n = len(triangle)
        for i in range(n-2, -1, -1):
            for j in range(i+1):
                triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1])
        return triangle[0][0]

空間優化2) 複雜度:時間O(n^2),空間O(n)。

class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
        n = len(triangle)
        dp = triangle[-1]    # dp[j] --- col-j

        for i in range(n-2, -1, -1):
            for j in range(i+1):
                dp[j] = min(dp[j], dp[j+1]) + triangle[i][j]
        return dp[0]

題目描述

一個機器人位於m*n棋盤的左上角。機器人只能向下/有移動。現想要機器人到達右下角,棋盤上可能有障礙物(標記為1)。 問有多少種不同的路徑?

例子

Input: [ [0,0,0], [0,1,0], [0,0,0] ] Output: 2

Explanation: There is one obstacle in the middle of the 3x3 grid above. There are two ways to reach the bottom-right corner: 1.Right -> Right -> Down -> Down 2.Down -> Down -> Right -> Right

思想 (DP) dp[i][j]表示到位置(i, j)的不同的路徑數。

解法 常規DP。複雜度:時間O(m*n),空間O(m*n)。

class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
        m, n = len(obstacleGrid), len(obstacleGrid[0])
        dp = [[0] * n for _ in range(m)]
        
        for j in range(n):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break
        for i in range(m):
            if obstacleGrid[i][0] == 0:
                dp[i][0] = 1
            else:
                break
        
        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] == 0:
                    dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[-1][-1]