梯度下降法的三種形式BGD(批量梯度下降)、SGD(隨機梯度下降)以及MBGD(小批量梯度下降)
在應用機器學習演算法時,我們通常採用梯度下降法來對採用的演算法進行訓練。其實,常用的梯度下降法還具體包含有三種不同的形式,它們也各自有著不同的優缺點。
下面我們以線性迴歸演算法來對三種梯度下降法進行比較。
一般線性迴歸函式的假設函式為:
對應的能量函式(損失函式)形式為:
下圖為一個二維引數(θ0θ0和θ1θ1)組對應能量函式的視覺化圖:
1.批量梯度下降(BGD)
批量梯度下降法(Batch Gradient Descent,簡稱BGD)是梯度下降法最原始的形式,它的具體思路是在更新每一引數時都使用所有的樣本來進行更新,其數學形式如下:
(1) 對上述的能量函式求偏導:
(2) 由於是最小化風險函式,所以按照每個引數θθ的梯度負方向來更新每個θθ:
具體的虛擬碼形式為:
從上面公式可以注意到,它得到的是一個全域性最優解,但是每迭代一步,都要用到訓練集所有的資料,如果樣本數目mm很大,那麼可想而知這種方法的迭代速度!所以,這就引入了另外一種方法,隨機梯度下降。
優點:全域性最優解;易於並行實現;
缺點:當樣本數目很多時,訓練過程會很慢。
從迭代的次數上來看,BGD迭代的次數相對較少。其迭代的收斂曲線示意圖可以表示如下:
2.隨機梯度下降(SGD)
由於批量梯度下降法在更新每一個引數時,都需要所有的訓練樣本,所以訓練過程會隨著樣本數量的加大而變得異常的緩慢。隨機梯度下降法(Stochastic Gradient Descent,簡稱SGD)正是為了解決批量梯度下降法這一弊端而提出的。
將上面的能量函式寫為如下形式:
利用每個樣本的損失函式對θ求偏導得到對應的梯度,來更新θ:
.
具體的虛擬碼形式為:
隨機梯度下降是通過每個樣本來迭代更新一次,如果樣本量很大的情況(例如幾十萬),那麼可能只用其中幾萬條或者幾千條的樣本,就已經將theta迭代到最優解了,對比上面的批量梯度下降,迭代一次需要用到十幾萬訓練樣本,一次迭代不可能最優,如果迭代10次的話就需要遍歷訓練樣本10次。但是,SGD伴隨的一個問題是噪音較BGD要多,使得SGD並不是每次迭代都向著整體最優化方向。
優點:訓練速度快;
缺點:準確度下降,並不是全域性最優;不易於並行實現。
從迭代的次數上來看,SGD迭代的次數較多,在解空間的搜尋過程看起來很盲目。其迭代的收斂曲線示意圖可以表示如下:
3. 小批量梯度下降法MBGD
有上述的兩種梯度下降法可以看出,其各自均有優缺點,那麼能不能在兩種方法的效能之間取得一個折衷呢?即,演算法的訓練過程比較快,而且也要保證最終引數訓練的準確率,而這正是小批量梯度下降法(Mini-batch Gradient Descent,簡稱MBGD)的初衷。
MBGD在每次更新引數時使用b個樣本(b一般為10),其具體的虛擬碼形式為:
4. 總結
Batch gradient descent: Use all examples in each iteration;
Stochastic gradient descent: Use 1 example in each iteration;
Mini-batch gradient descent: Use b examples in each iteration.