PyTorch學習:一個非常簡單的線性迴歸的小例子
阿新 • • 發佈:2018-12-20
import torch import numpy as np from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed(2018) # 讀入資料 x 和 y x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], [9.779], [6.182], [7.59], [2.167], [7.042], [10.791], [5.313], [7.997], [3.1]], dtype=np.float32) y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], [3.366], [2.596], [2.53], [1.221], [2.827], [3.465], [1.65], [2.904], [1.3]], dtype=np.float32) plt.plot(x_train, y_train, 'bo') plt.show() plt.close() # 轉換成 Tensor x_train = torch.from_numpy(x_train) y_train = torch.from_numpy(y_train) # 定義引數 w 和 b w = Variable(torch.randn(1), requires_grad=True) # 隨機初始化 b = Variable(torch.zeros(1), requires_grad=True) # 使用 0 進行初始化 # 構建線性迴歸模型 x_train = Variable(x_train) y_train = Variable(y_train) def linear_model(x): return x * w + b # 計算誤差 def get_loss(y_, y): return torch.mean((y_ - y_train) ** 2) for e in range(10): # 進行 10 次更新 y_ = linear_model(x_train) loss = get_loss(y_, y_train) if e!=0: #第一次不用歸零梯度 w.grad.zero_() # 記得歸零梯度 b.grad.zero_() # 記得歸零梯度 loss.backward() w.data = w.data - 1e-2 * w.grad.data # 更新 w b.data = b.data - 1e-2 * b.grad.data # 更新 b print('epoch: {}, loss: {}'.format(e, loss.item() ))#0.4.0之前用 loss.data[0] y_ = linear_model(x_train) plt.plot(x_train.data.numpy(), y_train.data.numpy(), 'bo', label='real') plt.plot(x_train.data.numpy(), y_.data.numpy(), 'ro', label='estimated') plt.legend() plt.show() plt.close()