1. 程式人生 > >範數及其應用

範數及其應用

範數

範數的一般化定義:設\(p\geq 1\)的實數,p-norm定義為:

\[ || x ||_{p}\; :=\; (\sum_{i=1}^{n}{\left| x_{i} \right|^{p}})^{\frac{1}{p}} \]

L0範數

\[\left| \left| x \right| \right|_{0}\; :=\; ^{0}\sqrt{\sum_{i=0}^{n}{x_{i}^{0}}}\]

嚴格來講,L0不屬於範數,上面的公式讓人難以理解。在實際應用中,人們往往採用以下定義:

\[\left| \left| x \right| \right|_{0}\; \; =\; \#\left( i \right)\; with\; x_{i}\; \neq \; 0\]

其表示向量中所有非零元素的個數。

L1範數

\[\left| \left| x \right| \right|_{1}\; :=\; \sum_{i=1}^{n}{\left| x_{i} \right|} \]

也稱為曼哈頓距離。

L0範數是指向量中非0的元素的個數。如果我們用L0範數來規則化一個引數矩陣W的話,就是希望W的大部分元素都是0。換句話說,讓引數W是稀疏的。看到了“稀疏”二字,大家都應該從當下風風火火的“壓縮感知”和“稀疏編碼”中醒悟過來,原來用的漫山遍野的“稀疏”就是通過這玩意來實現的。

但你又開始懷疑了,是這樣嗎?看到的papers世界中,稀疏不是都通過L1範數來實現嗎?腦海裡是不是到處都是||W||1影子呀!

L1範數和L0範數可以實現稀疏,L1因具有比L0更好的優化求解特性而被廣泛應用。

L2範數

範數中最常見,也最著名的非L2範數莫屬。
\[\left| \left| x \right| \right|_{2}\; :=\; \sqrt{\sum_{i=1}^{n}{x_{i}^{2}}}\]

L2範數的優點

從學習理論的角度來說,L2範數可以防止過擬合,提升模型的泛化能力。
從優化或者數值計算的角度來說,L2範數有助於處理condition number不好的情況下矩陣求逆很困難的問題。

L1和L2的差別,為什麼一個讓絕對值最小,一個讓平方最小,會有那麼大的差別呢?

下降速度:
L1就是按絕對值函式的“坡”下降的,而L2是按二次函式的“坡”下降。
模型空間的限制:


對於L1和L2規則化的代價函式來說,我們寫成一下形式:

\[ Lasso:\; \min_w{||y-Xw||^2},\; s.t.\ ||w||_1\leq{C}\\ Ridge:\; \min_w{||y-Xw||^2},\; s.t.\ ||w||_2\leq{C}\\ \]

考慮二維的情況,等高線與norm ball相交的地方就是最優解。L1-ball的最優點大都出現在"角點"處,這便大概率產生了稀疏性;L2-ball卻不可以,它只是一種規則化手段。

無限範數

infinity norm:
\[\left| \left| x \right| \right|_{\infty }\; :=\; ^{\infty }\sqrt{\sum_{i=1}^{n}{x_{i}^{\infty }}}\]

即:
\[\left| \left| x \right| \right|_{\infty }\; =\; ^{\infty }\sqrt{\sum_{i=1}^{n}{x_{i}^{\infty }}}\; =\; ^{\infty }\sqrt{x_{j}^{\infty }}\; \; =\; \max \left( \left| x_{j} \right|\right) \]
表示的是X向量中最大元素的長度。

機器學習中的應用

正則化

對模型複雜度進行懲罰,如果懲罰項選擇L1,則是我們所說的Lasso迴歸,而L2則是Ridge迴歸。

貝葉斯

正則化項從貝葉斯學習理論的角度來看,其相當於一種先驗函式分佈

即當你訓練一個模型時,僅僅依靠當前的訓練集資料是不夠的,為了實現更好的預測(泛化)效果,我們還應該加上先驗項。

而L1則相當於設定一個Laplacean先驗,而L2則類似於 Gaussian先驗。

L1先驗對大值和小值的tolerate很好,而L2先驗則傾向於均勻化大值和小值。

貝葉斯迴歸和圖模型

迴歸模型\(y=Xw+\epsilon\),可以看做是:
\[p(y|X; w,\lambda)=N(Xw,\lambda) ,\; p(\epsilon)=N(0,\lambda)\]

貝葉斯分佈:
\[p(\epsilon)=\frac{1}{\sqrt{2\pi}\delta}*\exp(-\frac{\epsilon^2}{2\delta^2})\]
所以:
\[p(y|x;w)=\frac{1}{\sqrt{2\pi}\delta}*\exp(-\frac{(y-w^Tx)^2}{2\delta^2})\]

對極大似然MLE取對數:
\[ \begin{split} l(w)&=log(\prod_{i=1}^{m}{\frac{1}{\sqrt{2\pi}\delta}*\exp(-\frac{(y-w^Tx)^2}{2\delta^2})}) \\ &=mlog(\frac{1}{\sqrt{2\pi}\delta}) - \frac{1}{2\delta^2}{\sum_{i=1}^{m}{(y-w^Tx)^2}} \end{split}\]

即:
\[w_{MLE}=arg\; min\sum_{i=1}^{m}{(y-w^Tx)^2}\]
這就匯出了平方損失函式。這是在我們對引數 w 沒有加入任何先驗分佈的情況下。

在資料維度很高的情況下,我們的模型引數很多,模型複雜度高,容易發生過擬合。這個時候,我們可以對引數 w 引入先驗分佈,降低模型複雜度。

Ridge Regression

假設引數w服從協方差為\(\alpha\)的標準高斯分佈。
\[ \begin{split} L(w)&=p(y|x;w*p(w))\\ &=\prod_{i=1}^{m}{\frac{1}{\sqrt{2\pi}\delta}*\exp(-\frac{(y-w^Tx)^2}{2\delta^2})})* \prod_{j=1}{n}{\frac{1}{\sqrt{2\pi}\alpha}*\exp(-\frac{(w)^2}{2\alpha^2})}, w是n個引數\\ &=\prod_{i=1}^{m}{\frac{1}{\sqrt{2\pi}\delta}*\exp(-\frac{(y-w^Tx)^2}{2\delta^2})})* \frac{1}{(2\pi)^{n/2}}\frac{1}{|\Sigma|^{1/2}}exp[-\frac{1}{2}{w^T\Sigma^{-1}w}] \end{split} \]

取對數,得:
\[ \begin{split} l(w)&=log(L(w)) \\ &= m\log{\frac{1}{\sqrt{2\pi}}} + nlog\frac{1}{\sqrt{2\pi}} -\frac{1}{2}\log{|\Sigma|}- \frac{1}{2\delta^2}{\sum_{i=1}^{m}{(y-w^Tx)^2}}-\frac{1}{2}\frac{1}{\alpha}w^Tw \end{split} \]

和w有關的項:
\[J(w)=\frac{1}{m}{||y-w^Tx||_2} + \lambda||w||_2\]

ridge regression 並不具有產生稀疏解的能力,也就是說引數並不會真出現很多零,只是會讓權值在0附近分佈很密集。

假設我們的預測結果與兩個特徵相關,L2正則傾向於綜合兩者的影響,給影響大的特徵賦予高的權重;而L1正則傾向於選擇影響較大的引數,而捨棄掉影響較小的那個。實際應用中L2正則表現往往會優於 L1正則,但 L1正則會大大降低我們的計算量。

Lasso

如果對w引入Laplace分佈呢?Laplace分佈:

\[f(x|u,b)=\frac{1}{2b}\exp({-\frac{|x-u|}{b}})\]


重複之前的推導過程我們很容易得到:

\[w_{MAP} = arg \min(\frac{1}{2\delta^2}{\sum_{i=1}^{m}(y-w^Tx)^2} + \frac{1}{2b^2}{||w||_1})\]

LASSO 仍然是一個 convex optimization 問題,它的優良性質是能產生稀疏性,導致 w 中許多項變成零。等價於L1正則化。

Elastic Net

既然 L1和 L2正則各自都有自己的優勢,那我們能不能將他們 combine 起來?於是就有了混合先驗概率,公式比較複雜,引數約束如下: