1. 程式人生 > >Weka中的有監督的離散化方法

Weka中的有監督的離散化方法

對應分析Weka中weka.filters.supervised.attribute.Discretize
涉及的其他類包括weka.filters.Filter
分析的巨集觀程式碼

Discretize disc=new Discretize()
disc.setInputFormat(data)
Instances afterDiscretize=Filter.useFilter(data,disc)

Filter.useFilter()

Filter.useFilter(Instances data, Filter filter){
for (int i = 0; i < data.numInstances(); i++) {
      filter
.input(data.instance(i)); //進一步呼叫bufferInput():把instance複製一份後交給Filter的m_InputFormat變數,這相當於輸入資料的一個完整copy // } filter.batchFinished();//呼叫離散化計算的主體部分calculateCutPoints()詳細分析見下文 Instances newData = filter.getOutputFormat(); Instance processed; while ((processed = filter.output()) != null) { newData.add(processed); } } return
newData

Discretize.calculateCutPoints()

calculateCutPoints(){
    m_CutPoints = new double[getInputFormat().numAttributes()][];
    calculateCutPointsByMDL(i, copy);//對第i個屬性進行離散化
}