「AGC005F」Many Easy Problems-NTT
阿新 • • 發佈:2018-12-22
Description
Solution
考慮每個點 的貢獻對 。即 。意思是在它的子樹中選取 個的總方案數減去只在它子樹中選 的方案數。
那麼答案的貢獻就是 ,其中 表示大小為 的子樹的數量,dfs求即可。可以發現後面的部分是一個卷積的形式,NTT即可。
#include <bits/stdc++.h>
using namespace std;
typedef long long lint;
const int mod = 924844033, Phi = mod - 1, G = 5;
const int maxn = 1000005;
int n;
int fac[maxn], ifac[maxn];
int a[maxn], b[maxn], c[maxn];
struct edge {
int to, next;
} e[maxn * 2];
int h[maxn], tot;
int cnt[maxn], siz[maxn];
inline int gi()
{
char c = getchar();
while (c < '0' || c > '9') c = getchar();
int sum = 0;
while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
return sum;
}
inline int Pow(int x, int k)
{
int res = 1;
while (k) {
if (k & 1) res = (lint)res * x % mod;
x = (lint)x * x % mod; k >>= 1;
}
return res;
}
inline void add(int u, int v)
{
e[++tot] = (edge) {v, h[u]}; h[u] = tot;
e[++tot] = (edge) {u, h[v]}; h[v] = tot;
}
void dfs(int u, int fa)
{
siz[u] = 1;
for (int i = h[u], v; v = e[i].to, i; i = e[i].next)
if (v != fa) {
dfs(v, u);
siz[u] += siz[v];
++cnt[siz[v]]; ++cnt[n - siz[v]];
}
}
namespace NTT
{
int n, L, R[maxn], A[maxn], B[maxn];
void NTT(int *a, int f)
{
for (int i = 0; i < n; ++i)
if (i < R[i]) swap(a[i], a[R[i]]);
for (int i = 1; i < n; i <<= 1) {
int wn = Pow(G, Phi / (i << 1)), t;
if (f == -1) wn = Pow(wn, mod - 2);
for (int j = 0; j < n; j += (i << 1)) {
int w = 1;
for (int k = 0; k < i; ++k, w = (lint)w * wn % mod) {
t = (lint)a[j + i + k] * w % mod;
a[j + i + k] = a[j + k] - t;
if (a[j + i + k] < 0) a[j + i + k] += mod;
a[j + k] = a[j + k] + t;
if (a[j + k] >= mod) a[j + k] -= mod;
}
}
}
}
void mul(int *a, int *b, int len1, int len2, int *c)
{
for (n = 1, len1 += len2 - 1; n < len1; n <<= 1) ++L;
--L;
for (int i = 0; i < n; ++i) R[i] = (R[i >> 1] >> 1) | ((i & 1) << L);
for (int i = 0; i < n; ++i) A[i] = a[i], B[i] = b[i];
NTT(A, 1); NTT(B, 1);
for (int i = 0; i < n; ++i) A[i] = (lint)A[i] * B[i] % mod;
NTT(A, -1);
int inv = Pow(n, mod - 2);
for (int i = 0; i < n; ++i) c[i] = (lint)A[i] * inv % mod;
}
}
int main()
{
n = gi();
for (int i = 1; i < n; ++i) add(gi(), gi());
dfs(1, 0);
fac[0] = ifac[0] = ifac[1] = 1;
for (int i = 1; i <= n; ++i) fac[i] = (lint)fac[i - 1] * i % mod;
for (int i = 2; i <= n; ++i) ifac[i] = (lint)(mod - mod / i) * ifac[mod % i] % mod;
for (int i = 1; i <= n; ++i) ifac[i] = (lint)ifac[i - 1] * ifac[i] % mod;
for (int i = 1; i <= n; ++i) a[i] = (lint)cnt[i] * fac[i] % mod;
for (int i = 1; i <= n; ++i) b[i] = ifac[n - i];
NTT::mul(a, b, n + 1, n + 1, c);
for (int i = 1; i <= n; ++i)
printf("%lld\n", ((lint)n * fac[n] % mod * ifac[i] % mod * ifac[n - i] % mod - (lint)ifac[i] * c[n + i] % mod + mod) % mod);
return 0;
}