數字影象處理(四)
阿新 • • 發佈:2018-12-23
本文主要用python在配置了opencv的環境下執行一下程式碼,配置opencv可以參考我的這篇文章:https://blog.csdn.net/weixin_32888153/article/details/84328599。但是,這裡邊並沒有包含python下opencv的配置。在vs2017python環境中搜索並安裝opencv-python
檢查是否安裝成功:
#匯入cv模組 import cv2 as cv #讀取影象,支援 bmp、jpg、png、tiff 等常用格式 img = cv.imread("111.jpg") #建立視窗並顯示影象 cv.namedWindow("Image") cv.imshow("Image",img) cv.waitKey(0) #釋放視窗 cv2.destroyAllWindows()
注意:圖片與檔案在同級,否則需要寫好相關的路徑。
#匯入所需要的包 import numpy as np from PIL import Image import matplotlib.pyplot as plt import math import random import cv2 import scipy.signal import scipy.ndimage #中值濾波 def medium_filter(im, x, y, step): sum_s=[] for k in range(-int(step/2),int(step/2)+1): for m in range(-int(step/2),int(step/2)+1): sum_s.append(im[x+k][y+m]) sum_s.sort() return sum_s[(int(step*step/2)+1)] #均值濾波 def mean_filter(im, x, y, step): sum_s = 0 for k in range(-int(step/2),int(step/2)+1): for m in range(-int(step/2),int(step/2)+1): sum_s += im[x+k][y+m] / (step*step) return sum_s def convert_2d(r): n = 3 # 3*3 濾波器, 每個係數都是 1/9 window = np.ones((n, n)) / n ** 2 # 使用濾波器卷積影象 # mode = same 表示輸出尺寸等於輸入尺寸 # boundary 表示採用對稱邊界條件處理影象邊緣 s = scipy.signal.convolve2d(r, window, mode='same', boundary='symm') return s.astype(np.uint8) #加椒鹽噪聲 def add_salt_noise(img): rows, cols, dims = img.shape R = np.mat(img[:, :, 0]) G = np.mat(img[:, :, 1]) B = np.mat(img[:, :, 2]) Grey_sp = R * 0.299 + G * 0.587 + B * 0.114 Grey_gs = R * 0.299 + G * 0.587 + B * 0.114 snr = 0.9 mu = 0 sigma = 0.12 noise_num = int((1 - snr) * rows * cols) for i in range(noise_num): rand_x = random.randint(0, rows - 1) rand_y = random.randint(0, cols - 1) if random.randint(0, 1) == 0: Grey_sp[rand_x, rand_y] = 0 else: Grey_sp[rand_x, rand_y] = 255 Grey_gs = Grey_gs + np.random.normal(0, 48, Grey_gs.shape) Grey_gs = Grey_gs - np.full(Grey_gs.shape, np.min(Grey_gs)) Grey_gs = Grey_gs * 255 / np.max(Grey_gs) Grey_gs = Grey_gs.astype(np.uint8) # 中值濾波 Grey_sp_mf = scipy.ndimage.median_filter(Grey_sp, (8, 8)) Grey_gs_mf = scipy.ndimage.median_filter(Grey_gs, (8, 8)) # 均值濾波 n = 3 window = np.ones((n, n)) / n ** 2 Grey_sp_me = convert_2d(Grey_sp) Grey_gs_me = convert_2d(Grey_gs) plt.subplot(321) plt.title('Grey salt and pepper noise') plt.imshow(Grey_sp, cmap='gray') plt.subplot(322) plt.title('Grey gauss noise') plt.imshow(Grey_gs, cmap='gray') plt.subplot(323) plt.title('Grey salt and pepper noise (medium)') plt.imshow(Grey_sp_mf, cmap='gray') plt.subplot(324) plt.title('Grey gauss noise (medium)') plt.imshow(Grey_gs_mf, cmap='gray') plt.subplot(325) plt.title('Grey salt and pepper noise (mean)') plt.imshow(Grey_sp_me, cmap='gray') plt.subplot(326) plt.title('Grey gauss noise (mean)') plt.imshow(Grey_gs_me, cmap='gray') plt.show() def main(): img = np.array(Image.open('111.jpg')) add_salt_noise(img) if __name__ == '__main__': main()
執行效果:
參考:https://blog.csdn.net/u012123989/article/details/78821037