1. 程式人生 > >基礎搜尋題 最少轉彎問題

基礎搜尋題 最少轉彎問題

給出一張地圖,這張地圖被分為n×m(n,m<=100)個方塊,任何一個方塊不是平地就是高山。平地可以通過,高山則不能。現在你處在地圖的(x1,y1)這塊平地,問:你至少需要拐幾個彎才能到達目的地(x2,y2)?你只能沿著水平和垂直方向的平地上行進,拐彎次數就等於行進方向的改變(從水平到垂直或從垂直到水平)的次數。例如:如圖,最少的拐彎次數為5。

輸入

第1行:n   m

第2至n+1行:整個地圖地形描述(0:空地;1:高山),

如(圖) 第2行地形描述為:1 0 0 0 0 1 0

               第3行地形描述為:0 0 1 0 1 0 0

               ……

第n+2行:x1  y1  x2  y2  (分別為起點、終點座標)

輸出

輸出s (即最少的拐彎次數)

樣例輸入

5 7
1 0 0 0 0 1 0 
0 0 1 0 1 0 0 
0 0 0 0 1 0 1 
0 1 1 0 0 0 0 
0 0 0 0 1 1 0
1 3 1 7

樣例輸出

5

一道簡單的廣度搜索題,唯一變化的是要在結構體中加入方向這一變數,來求最後的答案。

#include <cstring>
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
struct node
{
    int x,y,cnt;
    char dc;      //結構體中加入判斷方向的變數
};
 
int n,m;
int fd[110][110];   //判斷路徑是否走過的標記

queue<node>p;    
 
int bfs(int x1,int y1,int x2,int y2)
{
    node no;
    no.x=x1;
    no.y=y1;
    no.cnt=0;
    no.dc='0';
    a=0,b=0,l=0,r=0;
    fd[x1][y1]=1;      //入佇列
 
    p.push(no);
    while(!p.empty())
    {
        int x,y,k;
        char ch;
        node z;
        z=p.front();
        p.pop();
        x=z.x;
        y=z.y;
        k=z.cnt;
        ch=z.dc;
 
        if(x==x2&&y==y2)return k;
        for(int i=-1;i<=1;i++)
            for(int j=-1;j<=1;j++)
            {
                if(i!=j&&i+j!=0)
                {
                    if(x+i>=1&&x+i<=n&&y+j>=1&&y+j<=m)
                    {
                        if(fd[x+i][y+j]==0)
                        {
                            char chh;
                            z.x=x+i;
                            z.y=y+j;
                            if(i==1)chh='b';   //判斷方向
                            if(i==-1)chh='a';
                            if(j==1)chh='r';
                            if(j==-1)chh='l';
                            fd[z.x][z.y]=1;
 
                            if(chh==ch||ch=='0')z.cnt=k;
                            else z.cnt=k+1;
                            z.dc=chh;
 
                            p.push(z);
 
 
                        }
                    }
                }
            }
 
    }
 int main()
{
    while(scanf("%d%d",&n,&m)==2)
    {
        int x1,x2,y1,y2;
        int O;
        memset(fd,0,sizeof(fd));
        while(!p.empty())p.pop();
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%d",&O);
                if(O==1)fd[i][j]=1;
            }
        }
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        printf("%d\n",bfs(x1,y1,x2,y2));
    }
    return 0;
}