1. 程式人生 > >【容斥】Four-tuples @山東省第九屆省賽 F

【容斥】Four-tuples @山東省第九屆省賽 F

時間限制: 10 Sec 記憶體限制: 128 MB
題目描述
Given l1,r1,l2,r2,l3,r3,l4,r4, please count the number of four-tuples (x1,x2,x3,x4) such that li≤ xi≤ ri and x1≠x2,x2≠x3,x3≠x4,x4≠x1. The answer should modulo 10^9+7 before output.
輸入
The input consists of several test cases. The first line gives the number of test cases, T(1≤ T≤ 10^6).
For each test case, the input contains one line with 8 integers l1,r1,l2, r2, l3,r3,l4,r4(1≤ li≤ ri≤ 10^9)
輸出
For each test case, output one line containing one integer, representing the answer.
樣例輸入
1
1 1 2 2 3 3 4 4
樣例輸出
1

題意:
給你四個區間,要求每個區間選一個數組成一個四元組(x1,x2,x3,x4),要求
x1x2,x2x3,x3x4,x4x1

solution
1.先將四個區間長度的乘積作為答案
2.分別減去 x1=x2,x2=x3,x3=x4,x4=x1 四種情況的組合數量(每種情況中未提及的變數在其區間中任選,即統計答案時直接乘區間長度)
3.因為減去 x1=x2x2=x3 時會重複減去 x1=x2=x3 的情況,所以要加回來
類似的還有

x1=x2=x4, x2=x3=x4, x1=x3=x4, x1=x2x3=x4, x2=x3x1=x4
4.第一步的答案中應該減去1個x1=x2=x3=x4,但是在第二步中減去了4個,第三步中又加了6個,所以總共加了2個,最終應該減去3個x1=x2=x3=x4 的情況

#define IN_LB() freopen("C:\\Users\\acm2018\\Desktop\\in.txt","r",stdin)
#define OUT_LB() freopen("C:\\Users\\acm2018\\Desktop\\out.txt"
,"w",stdout) #define IN_PC() freopen("C:\\Users\\hz\\Desktop\\in.txt","r",stdin) #include <bits/stdc++.h> using namespace std; typedef long long ll; int T; const ll MOD = 1e9+7; int main() { // IN_LB(); scanf("%d",&T); while(T--) { ll l1,r1,l2,r2,l3,r3,l4,r4; ll maxl_1,minr_1,maxl_2,minr_2; scanf("%lld%lld%lld%lld%lld%lld%lld%lld",&l1,&r1,&l2,&r2,&l3,&r3,&l4,&r4); ll ans = (r1-l1+1)*(r2-l2+1)%MOD; ans = ans*(r3-l3+1)%MOD; ans = ans*(r4-l4+1)%MOD; //1==2 maxl_1 = max(l1,l2); minr_1 = min(r1,r2); if(maxl_1<=minr_1) { ans = ((ans-(minr_1-maxl_1+1)*(r3-l3+1)%MOD*(r4-l4+1)%MOD)%MOD+MOD)%MOD; } //2==3 maxl_1 = max(l2,l3); minr_1 = min(r2,r3); if(maxl_1<=minr_1) { ans = ((ans-(minr_1-maxl_1+1)*(r4-l4+1)%MOD*(r1-l1+1)%MOD)%MOD+MOD)%MOD; } //3==4 maxl_1 = max(l3,l4); minr_1 = min(r3,r4); if(maxl_1<=minr_1) { ans = ((ans-(minr_1-maxl_1+1)*(r1-l1+1)%MOD*(r2-l2+1)%MOD)%MOD+MOD)%MOD; } //1==4 maxl_1 = max(l1,l4); minr_1 = min(r1,r4); if(maxl_1<=minr_1) { ans = ((ans-(minr_1-maxl_1+1)*(r2-l2+1)%MOD*(r3-l3+1)%MOD)%MOD+MOD)%MOD; } //1==2&&2==3 maxl_1 = max(l1,max(l2,l3)); minr_1 = min(r1,min(r2,r3)); if(maxl_1<=minr_1) { ans = (ans+(minr_1-maxl_1+1)*(r4-l4+1)%MOD)%MOD; } //1==2&&1==4 maxl_1 = max(l1,max(l2,l4)); minr_1 = min(r1,min(r2,r4)); if(maxl_1<=minr_1) { ans = (ans+(minr_1-maxl_1+1)*(r3-l3+1)%MOD)%MOD; } //1==2&&3==4 maxl_1 = max(l1,l2); minr_1 = min(r1,r2); maxl_2 = max(l3,l4); minr_2 = min(r3,r4); if(minr_1>=maxl_1&&minr_2>=maxl_2){ ans = (ans+(minr_1-maxl_1+1)*(minr_2-maxl_2+1)%MOD)%MOD; } //2==3&&3==4 maxl_1 = max(l2,max(l3,l4)); minr_1 = min(r2,min(r3,r4)); if(maxl_1<=minr_1) { ans = (ans+(minr_1-maxl_1+1)*(r1-l1+1)%MOD)%MOD; } //2==3&&1==4 maxl_1 = max(l3,l2); minr_1 = min(r3,r2); maxl_2 = max(l1,l4); minr_2 = min(r1,r4); if(minr_1>=maxl_1&&minr_2>=maxl_2){ ans = (ans+(minr_1-maxl_1+1)*(minr_2-maxl_2+1)%MOD)%MOD; } //3==4&&1==4 maxl_1 = max(l1,max(l3,l4)); minr_1 = min(r1,min(r3,r4)); if(maxl_1<=minr_1) { ans = (ans+(minr_1-maxl_1+1)*(r2-l2+1)%MOD)%MOD; } //1==2&&2==3&&3==4 maxl_1 = max(max(l1,l2),max(l3,l4)); minr_1 = min(min(r1,r2),min(r3,r4)); if(maxl_1<=minr_1){ ans = ((ans-(minr_1-maxl_1+1)*3)%MOD+MOD)%MOD; } printf("%lld\n",ans); } return 0; }