【容斥】Four-tuples @山東省第九屆省賽 F
時間限制: 10 Sec 記憶體限制: 128 MB
題目描述
Given l1,r1,l2,r2,l3,r3,l4,r4, please count the number of four-tuples (x1,x2,x3,x4) such that li≤ xi≤ ri and x1≠x2,x2≠x3,x3≠x4,x4≠x1. The answer should modulo 10^9+7 before output.
輸入
The input consists of several test cases. The first line gives the number of test cases, T(1≤ T≤ 10^6).
For each test case, the input contains one line with 8 integers l1,r1,l2, r2, l3,r3,l4,r4(1≤ li≤ ri≤ 10^9)
輸出
For each test case, output one line containing one integer, representing the answer.
樣例輸入
1
1 1 2 2 3 3 4 4
樣例輸出
1
題意:
給你四個區間,要求每個區間選一個數組成一個四元組(),要求
solution
1.先將四個區間長度的乘積作為答案
2.分別減去 四種情況的組合數量(每種情況中未提及的變數在其區間中任選,即統計答案時直接乘區間長度)
3.因為減去 和 時會重複減去 的情況,所以要加回來
類似的還有
4.第一步的答案中應該減去1個,但是在第二步中減去了4個,第三步中又加了6個,所以總共加了2個,最終應該減去3個 的情況
#define IN_LB() freopen("C:\\Users\\acm2018\\Desktop\\in.txt","r",stdin)
#define OUT_LB() freopen("C:\\Users\\acm2018\\Desktop\\out.txt" ,"w",stdout)
#define IN_PC() freopen("C:\\Users\\hz\\Desktop\\in.txt","r",stdin)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int T;
const ll MOD = 1e9+7;
int main() {
// IN_LB();
scanf("%d",&T);
while(T--) {
ll l1,r1,l2,r2,l3,r3,l4,r4;
ll maxl_1,minr_1,maxl_2,minr_2;
scanf("%lld%lld%lld%lld%lld%lld%lld%lld",&l1,&r1,&l2,&r2,&l3,&r3,&l4,&r4);
ll ans = (r1-l1+1)*(r2-l2+1)%MOD;
ans = ans*(r3-l3+1)%MOD;
ans = ans*(r4-l4+1)%MOD;
//1==2
maxl_1 = max(l1,l2);
minr_1 = min(r1,r2);
if(maxl_1<=minr_1) {
ans = ((ans-(minr_1-maxl_1+1)*(r3-l3+1)%MOD*(r4-l4+1)%MOD)%MOD+MOD)%MOD;
}
//2==3
maxl_1 = max(l2,l3);
minr_1 = min(r2,r3);
if(maxl_1<=minr_1) {
ans = ((ans-(minr_1-maxl_1+1)*(r4-l4+1)%MOD*(r1-l1+1)%MOD)%MOD+MOD)%MOD;
}
//3==4
maxl_1 = max(l3,l4);
minr_1 = min(r3,r4);
if(maxl_1<=minr_1) {
ans = ((ans-(minr_1-maxl_1+1)*(r1-l1+1)%MOD*(r2-l2+1)%MOD)%MOD+MOD)%MOD;
}
//1==4
maxl_1 = max(l1,l4);
minr_1 = min(r1,r4);
if(maxl_1<=minr_1) {
ans = ((ans-(minr_1-maxl_1+1)*(r2-l2+1)%MOD*(r3-l3+1)%MOD)%MOD+MOD)%MOD;
}
//1==2&&2==3
maxl_1 = max(l1,max(l2,l3));
minr_1 = min(r1,min(r2,r3));
if(maxl_1<=minr_1) {
ans = (ans+(minr_1-maxl_1+1)*(r4-l4+1)%MOD)%MOD;
}
//1==2&&1==4
maxl_1 = max(l1,max(l2,l4));
minr_1 = min(r1,min(r2,r4));
if(maxl_1<=minr_1) {
ans = (ans+(minr_1-maxl_1+1)*(r3-l3+1)%MOD)%MOD;
}
//1==2&&3==4
maxl_1 = max(l1,l2);
minr_1 = min(r1,r2);
maxl_2 = max(l3,l4);
minr_2 = min(r3,r4);
if(minr_1>=maxl_1&&minr_2>=maxl_2){
ans = (ans+(minr_1-maxl_1+1)*(minr_2-maxl_2+1)%MOD)%MOD;
}
//2==3&&3==4
maxl_1 = max(l2,max(l3,l4));
minr_1 = min(r2,min(r3,r4));
if(maxl_1<=minr_1) {
ans = (ans+(minr_1-maxl_1+1)*(r1-l1+1)%MOD)%MOD;
}
//2==3&&1==4
maxl_1 = max(l3,l2);
minr_1 = min(r3,r2);
maxl_2 = max(l1,l4);
minr_2 = min(r1,r4);
if(minr_1>=maxl_1&&minr_2>=maxl_2){
ans = (ans+(minr_1-maxl_1+1)*(minr_2-maxl_2+1)%MOD)%MOD;
}
//3==4&&1==4
maxl_1 = max(l1,max(l3,l4));
minr_1 = min(r1,min(r3,r4));
if(maxl_1<=minr_1) {
ans = (ans+(minr_1-maxl_1+1)*(r2-l2+1)%MOD)%MOD;
}
//1==2&&2==3&&3==4
maxl_1 = max(max(l1,l2),max(l3,l4));
minr_1 = min(min(r1,r2),min(r3,r4));
if(maxl_1<=minr_1){
ans = ((ans-(minr_1-maxl_1+1)*3)%MOD+MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}