[QUANTAXIS量化分析]羊駝策略1
阿新 • • 發佈:2018-12-24
羊駝策略1
基本原理
- 在本策略中,每天按照收益率從小到大對股票池中的所有股票進行排序,起始時買入num_of_stocks只股票,然後每天在整個股票池中選出收益率前num_of_stocks,如果這些股票已持有,則繼續持有,如果未持有則買入,並賣掉收益率不是排在前num_of_stocks的股票
策略實現
-
選取市盈率在0~20之間的股票,作為待選股(若用所有股票,計算量過於龐大),一共332支股票
-
初始資金100萬,時間段為:2016-01-01~2018-05-01
-
設定策略引數,初始買入的股票數num_of_stocks,收益率計算所用天數period
-
其中收益率=昨天的收盤價/period天之前的收盤價
-
將股票池內的股票按照收益率排序,買入收益率最高的num_of_stocks只股票(num_of_stocks預設為10)各1000股。
-
之後的每天都將所有股票按收益率排序,如果股票池中有處於收益率前num_of_stocks而未持有的則買入,並賣掉收益率不處於前num_of_stocks的
-
(一天操作股票數量為20)執行截圖:
-
(一天操作股票數量為10)執行截圖:
程式碼如下:
# coding: utf-8 # @author: lin # @date: 2018/11/9 import QUANTAXIS as QA import datetime import pandas as pd import time import matplotlib.pyplot as plt import numpy as np pd.set_option('max_colwidth', 5000) pd.set_option('display.max_columns', 5000) pd.set_option('display.max_rows', 5000) class Alpaca: def __init__(self, start_time, stop_time, n_stock=10, stock_init_cash=1000000, n_days_before=1): self.Account = QA.QA_Account() # 初始化賬戶 self.Account.reset_assets(stock_init_cash) # 初始化賬戶 self.Account.account_cookie = 'alpaca' self.Broker = QA.QA_BacktestBroker() self.time_quantum_list = ['-12-31', '-09-30', '-06-30', '-03-31'] self.start_time = start_time self.stop_time = stop_time self.n_days_before = n_days_before self.stock_pool = [] self.data = None self.ind = None self.n_stock = n_stock self.get_stock_pool() def get_financial_time(self): """ 得到此日期前一個財務資料的日期 :return: """ year = self.start_time[0:4] while (True): for day in self.time_quantum_list: the_financial_time = year + day if the_financial_time <= self.start_time: return the_financial_time year = str(int(year) - 1) @staticmethod def get_assets_eps(stock_code, the_financial_time): """ 得到高階財務資料 :param stock_code: :param the_financial_time: 離開始時間最近的財務資料的時間 :return: """ financial_report = QA.QA_fetch_financial_report(stock_code, the_financial_time) if financial_report is not None: return financial_report.iloc[0]['totalAssets'], financial_report.iloc[0]['EPS'] return None, None def get_stock_pool(self): """ 選取哪些股票 """ stock_code_list = QA.QA_fetch_stock_list_adv().code.tolist() the_financial_time = self.get_financial_time() for stock_code in stock_code_list: # print(stock_code) assets, EPS = self.get_assets_eps(stock_code, the_financial_time) if assets is not None and EPS != 0: data = QA.QA_fetch_stock_day_adv(stock_code, self.start_time, self.stop_time) if data is None: continue price = data.to_pd().iloc[0]['close'] if 0 < price / EPS < 20: # 滿足條件才新增進行排序 # print(price / EPS) self.stock_pool.append(stock_code) # 成交量因子 def alpaca(self, data): data['yesterday_price'] = 0 data['previous_n_price'] = 0 data.reset_index(inplace=True) # 重置後,索引以數字 for index, row in data.iterrows(): yes_index = index - 1 pre_n_index = index - (self.n_days_before+1) if yes_index >= 0: data.loc[index, 'yesterday_price'] = data.loc[yes_index, 'close'] if pre_n_index >= 0: data.loc[index, 'previous_n_price'] = data.loc[pre_n_index, 'close'] data['yield_rate'] = 0 data['yield_rate'] = data['yesterday_price'] / data['previous_n_price'] data.set_index(['date', 'code'], inplace=True) return data def solve_data(self): self.data = QA.QA_fetch_stock_day_adv(self.stock_pool, self.start_time, self.stop_time) self.ind = self.data.add_func(self.alpaca) def run(self): self.solve_data() for items in self.data.panel_gen: today_time = items.index[0][0] one_day_data = self.ind.loc[today_time] # 得到有包含因子的DataFrame one_day_data['date'] = items.index[0][0] one_day_data.reset_index(inplace=True) one_day_data.sort_values(by='yield_rate', axis=0, ascending=False, inplace=True) today_stock = list(one_day_data.iloc[0:self.n_stock]['code']) one_day_data.set_index(['date', 'code'], inplace=True) one_day_data = QA.QA_DataStruct_Stock_day(one_day_data) # 轉換格式,便於計算 bought_stock_list = list(self.Account.hold.index) print("SELL:") for stock_code in bought_stock_list: # 如果直接在迴圈中對bought_stock_list操作,會跳過一些元素 if stock_code not in today_stock: try: item = one_day_data.select_day(str(today_time)).select_code(stock_code) order = self.Account.send_order( code=stock_code, time=today_time, amount=self.Account.sell_available.get(stock_code, 0), towards=QA.ORDER_DIRECTION.SELL, price=0, order_model=QA.ORDER_MODEL.MARKET, amount_model=QA.AMOUNT_MODEL.BY_AMOUNT ) self.Broker.receive_order(QA.QA_Event(order=order, market_data=item)) trade_mes = self.Broker.query_orders(self.Account.account_cookie, 'filled') res = trade_mes.loc[order.account_cookie, order.realorder_id] order.trade(res.trade_id, res.trade_price, res.trade_amount, res.trade_time) except Exception as e: print(e) print('BUY:') for stock_code in today_stock: try: item = one_day_data.select_day(str(today_time)).select_code(stock_code) order = self.Account.send_order( code=stock_code, time=today_time, amount=1000, towards=QA.ORDER_DIRECTION.BUY, price=0, order_model=QA.ORDER_MODEL.CLOSE, amount_model=QA.AMOUNT_MODEL.BY_AMOUNT ) self.Broker.receive_order(QA.QA_Event(order=order, market_data=item)) trade_mes = self.Broker.query_orders(self.Account.account_cookie, 'filled') res = trade_mes.loc[order.account_cookie, order.realorder_id] order.trade(res.trade_id, res.trade_price, res.trade_amount, res.trade_time) except Exception as e: print(e) self.Account.settle() Risk = QA.QA_Risk(self.Account) print(Risk.message) # plt.show() Risk.assets.plot() # 總資產 plt.show() Risk.benchmark_assets.plot() # 基準收益的資產 plt.show() Risk.plot_assets_curve() # 兩個合起來的對比圖 plt.show() Risk.plot_dailyhold() # 每隻股票每天的買入量 plt.show() start = time.time() sss = Alpaca('2017-01-01', '2018-01-01', 10) stop = time.time() print(stop - start) print(len(sss.stock_pool)) sss.run() stop2 = time.time() print(stop2 - stop)