1. 程式人生 > >線段樹離線處理(區間內出現k次的數有多少個)Codeforces Round #136 (Div. 2)

線段樹離線處理(區間內出現k次的數有多少個)Codeforces Round #136 (Div. 2)

D. Little Elephant and Array time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output

The Little Elephant loves playing with arrays. He has array a, consisting of n positive integers, indexed from 1 to n. Let's denote the number with index i as ai.

Additionally the Little Elephant has m queries to the array, each query is characterised by a pair of integers lj and rj (1 ≤ lj ≤ rj ≤ n

). For each query lj, rj the Little Elephant has to count, how many numbers x exist, such that number x occurs exactly x times among numbers alj, alj + 1, ..., arj.

Help the Little Elephant to count the answers to all queries.

Input

The first line contains two space-separated integers n and m (1 ≤ n

, m ≤ 105) — the size of array a and the number of queries to it. The next line contains n space-separated positive integers a1, a2, ..., an (1 ≤ ai ≤ 109). Next m lines contain descriptions of queries, one per line. The j-th of these lines contains the description of the j-th query as two space-separated integers l
j
and rj (1 ≤ lj ≤ rj ≤ n).

Output

In m lines print m integers — the answers to the queries. The j-th line should contain the answer to the j-th query.

Sample test(s) Input
7 2
3 1 2 2 3 3 7
1 7
3 4
Output
3
1

跟hdu4358很像,只不過4358需要先把樹形結構轉化成線性的

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
const int N=1e5+5;
struct Query
{
    int st,ed,id;
    Query(){}
    Query(int a,int b,int c){st=a;ed=b;id=c;}
    bool operator < (const Query &b)const
    {
        return ed<b.ed;
    }
};
struct node
{
    int lft,rht,sum;
    int mid(){return lft+(rht-lft)/2;}
};
struct Segtree
{
    node tree[N*4];
    void build(int lft,int rht,int ind)
    {
        tree[ind].lft=lft;  tree[ind].rht=rht;
        tree[ind].sum=0;
        if(lft!=rht)
        {
            int mid=tree[ind].mid();
            build(lft,mid,LL(ind));
            build(mid+1,rht,RR(ind));
        }
    }
    void updata(int pos,int ind,int valu)
    {
        tree[ind].sum+=valu;
        if(tree[ind].lft==tree[ind].rht) return;
        else 
        {
            int mid=tree[ind].mid();
            if(pos<=mid) updata(pos,LL(ind),valu);
            else updata(pos,RR(ind),valu);
        }
    }
    int query(int be,int end,int ind)
    {
        int lft=tree[ind].lft,rht=tree[ind].rht;
        if(be<=lft&&rht<=end) return tree[ind].sum;
        else 
        {
            int mid=tree[ind].mid();
            int sum1=0,sum2=0;
            if(be<=mid) sum1=query(be,end,LL(ind));
            if(end>mid) sum2=query(be,end,RR(ind));
            return sum1+sum2;
        }
    }
}seg;

vector<int> pos[N];
vector<Query> query;
int data[N],cnt[N],res[N];

int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&data[i]);
    for(int i=0;i<m;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        query.push_back(Query(a,b,i));
    }
    sort(query.begin(),query.end());

    int ind=0;
    seg.build(1,n,1);
    for(int i=1;i<=n;i++)
    {
        int valu=data[i];
        if(valu<=n)
        {
            cnt[valu]++;
            pos[valu].push_back(i);
            if(cnt[valu]>=valu)
            {
                if(cnt[valu]>valu) 
                    seg.updata(pos[valu][cnt[valu]-valu-1],1,-2);
                if(cnt[valu]>valu+1) 
                    seg.updata(pos[valu][cnt[valu]-valu-2],1,1);
                seg.updata(pos[valu][cnt[valu]-valu],1,1);
            }
        }
        while(query[ind].ed==i&&ind<m)
        {
            res[query[ind].id]=seg.query(query[ind].st,query[ind].ed,1);
            ind++;
        }
    }
    for(int i=0;i<m;i++) printf("%d\n",res[i]);
    return 0;
}