Spark修煉之道(高階篇)——Spark原始碼閱讀:第十三節 Spark SQL之SQLContext(一)
作者:周志湖
1. SQLContext的建立
SQLContext是Spark SQL進行結構化資料處理的入口,可以通過它進行DataFrame的建立及SQL的執行,其建立方式如下:
//sc為SparkContext
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
其對應的原始碼為:
def this(sparkContext: SparkContext) = {
this(sparkContext, new CacheManager, SQLContext.createListenerAndUI(sparkContext), true )
}
其呼叫的是私有的主建構函式:
//1.主構造器中的引數CacheManager用於快取查詢結果
//在進行後續查詢時會自動讀取快取中的資料
//2.SQLListener用於監聽Spark scheduler事件,它繼承自SparkListener
//3.isRootContext表示是否是根SQLContext
class SQLContext private[sql](
@transient val sparkContext: SparkContext,
@transient protected[sql] val cacheManager: CacheManager,
@transient private [sql] val listener: SQLListener,
val isRootContext: Boolean)
extends org.apache.spark.Logging with Serializable {
當spark.sql.allowMultipleContexts設定為true時,則允許建立多個SQLContexts/HiveContexts,建立方法為newSession
def newSession(): SQLContext = {
new SQLContext(
sparkContext = sparkContext,
cacheManager = cacheManager,
listener = listener,
isRootContext = false)
}
其isRootContext 被設定為false,否則會丟擲異常,因為root SQLContext只能有一個,其它SQLContext與root SQLContext共享SparkContext, CacheManager, SQLListener。如果spark.sql.allowMultipleContexts為false,則只允許一個SQLContext存在
2. 核心成員變數 ——catalog
protected[sql] lazy val catalog: Catalog = new SimpleCatalog(conf)
catalog用於登出表、登出表、判斷表是否存在等,例如當DataFrame呼叫registerTempTable 方法時
val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")
會sqlContext的registerDataFrameAsTable方法
def registerTempTable(tableName: String): Unit = {
sqlContext.registerDataFrameAsTable(this, tableName)
}
sqlContext.registerDataFrameAsTable實質上呼叫的就是catalog的registerTable 方法:
private[sql] def registerDataFrameAsTable(df: DataFrame, tableName: String): Unit = {
catalog.registerTable(TableIdentifier(tableName), df.logicalPlan)
}
SimpleCatalog整體原始碼如下:
class SimpleCatalog(val conf: CatalystConf) extends Catalog {
private[this] val tables = new ConcurrentHashMap[String, LogicalPlan]
override def registerTable(tableIdent: TableIdentifier, plan: LogicalPlan): Unit = {
tables.put(getTableName(tableIdent), plan)
}
override def unregisterTable(tableIdent: TableIdentifier): Unit = {
tables.remove(getTableName(tableIdent))
}
override def unregisterAllTables(): Unit = {
tables.clear()
}
override def tableExists(tableIdent: TableIdentifier): Boolean = {
tables.containsKey(getTableName(tableIdent))
}
override def lookupRelation(
tableIdent: TableIdentifier,
alias: Option[String] = None): LogicalPlan = {
val tableName = getTableName(tableIdent)
val table = tables.get(tableName)
if (table == null) {
throw new NoSuchTableException
}
val tableWithQualifiers = Subquery(tableName, table)
// If an alias was specified by the lookup, wrap the plan in a subquery so that attributes are
// properly qualified with this alias.
alias.map(a => Subquery(a, tableWithQualifiers)).getOrElse(tableWithQualifiers)
}
override def getTables(databaseName: Option[String]): Seq[(String, Boolean)] = {
tables.keySet().asScala.map(_ -> true).toSeq
}
override def refreshTable(tableIdent: TableIdentifier): Unit = {
throw new UnsupportedOperationException
}
}
3. 核心成員變數 ——sqlParser
sqlParser在SQLContext的定義:
protected[sql] val sqlParser = new SparkSQLParser(getSQLDialect().parse(_))
SparkSQLParser為頂級的Spark SQL解析器,對Spark SQL支援的SQL語法進行解析,其定義如下:
private[sql] class SparkSQLParser(fallback: String => LogicalPlan) extends AbstractSparkSQLParser
fallback函式用於解析其它非Spark SQL Dialect的語法。
Spark SQL Dialect支援的關鍵字包括:
protected val AS = Keyword("AS")
protected val CACHE = Keyword("CACHE")
protected val CLEAR = Keyword("CLEAR")
protected val DESCRIBE = Keyword("DESCRIBE")
protected val EXTENDED = Keyword("EXTENDED")
protected val FUNCTION = Keyword("FUNCTION")
protected val FUNCTIONS = Keyword("FUNCTIONS")
protected val IN = Keyword("IN")
protected val LAZY = Keyword("LAZY")
protected val SET = Keyword("SET")
protected val SHOW = Keyword("SHOW")
protected val TABLE = Keyword("TABLE")
protected val TABLES = Keyword("TABLES")
protected val UNCACHE = Keyword("UNCACHE")
4. 核心成員變數 ——ddlParser
用於解析DDL(Data Definition Language 資料定義語言)
protected[sql] val ddlParser = new DDLParser(sqlParser.parse(_))
其支援的關鍵字有:
protected val CREATE = Keyword("CREATE")
protected val TEMPORARY = Keyword("TEMPORARY")
protected val TABLE = Keyword("TABLE")
protected val IF = Keyword("IF")
protected val NOT = Keyword("NOT")
protected val EXISTS = Keyword("EXISTS")
protected val USING = Keyword("USING")
protected val OPTIONS = Keyword("OPTIONS")
protected val DESCRIBE = Keyword("DESCRIBE")
protected val EXTENDED = Keyword("EXTENDED")
protected val AS = Keyword("AS")
protected val COMMENT = Keyword("COMMENT")
protected val REFRESH = Keyword("REFRESH")
主要做三件事,分別是建立表、描述表和更新表
protected lazy val ddl: Parser[LogicalPlan] = createTable | describeTable | refreshTable
createTable方法具有如下(具體功能參考註釋說明):
/**
* `CREATE [TEMPORARY] TABLE avroTable [IF NOT EXISTS]
* USING org.apache.spark.sql.avro
* OPTIONS (path "../hive/src/test/resources/data/files/episodes.avro")`
* or
* `CREATE [TEMPORARY] TABLE avroTable(intField int, stringField string...) [IF NOT EXISTS]
* USING org.apache.spark.sql.avro
* OPTIONS (path "../hive/src/test/resources/data/files/episodes.avro")`
* or
* `CREATE [TEMPORARY] TABLE avroTable [IF NOT EXISTS]
* USING org.apache.spark.sql.avro
* OPTIONS (path "../hive/src/test/resources/data/files/episodes.avro")`
* AS SELECT ...
*/
protected lazy val createTable: Parser[LogicalPlan] = {
// TODO: Support database.table.
(CREATE ~> TEMPORARY.? <~ TABLE) ~ (IF ~> NOT <~ EXISTS).? ~ tableIdentifier ~
tableCols.? ~ (USING ~> className) ~ (OPTIONS ~> options).? ~ (AS ~> restInput).? ^^ {
case temp ~ allowExisting ~ tableIdent ~ columns ~ provider ~ opts ~ query =>
if (temp.isDefined && allowExisting.isDefined) {
throw new DDLException(
"a CREATE TEMPORARY TABLE statement does not allow IF NOT EXISTS clause.")
}
val options = opts.getOrElse(Map.empty[String, String])
if (query.isDefined) {
if (columns.isDefined) {
throw new DDLException(
"a CREATE TABLE AS SELECT statement does not allow column definitions.")
}
// When IF NOT EXISTS clause appears in the query, the save mode will be ignore.
val mode = if (allowExisting.isDefined) {
SaveMode.Ignore
} else if (temp.isDefined) {
SaveMode.Overwrite
} else {
SaveMode.ErrorIfExists
}
val queryPlan = parseQuery(query.get)
CreateTableUsingAsSelect(tableIdent,
provider,
temp.isDefined,
Array.empty[String],
mode,
options,
queryPlan)
} else {
val userSpecifiedSchema = columns.flatMap(fields => Some(StructType(fields)))
CreateTableUsing(
tableIdent,
userSpecifiedSchema,
provider,
temp.isDefined,
options,
allowExisting.isDefined,
managedIfNoPath = false)
}
}
}
describeTable及refreshTable程式碼如下:
/*
* describe [extended] table avroTable
* This will display all columns of table `avroTable` includes column_name,column_type,comment
*/
protected lazy val describeTable: Parser[LogicalPlan] =
(DESCRIBE ~> opt(EXTENDED)) ~ tableIdentifier ^^ {
case e ~ tableIdent =>
DescribeCommand(UnresolvedRelation(tableIdent, None), e.isDefined)
}
protected lazy val refreshTable: Parser[LogicalPlan] =
REFRESH ~> TABLE ~> tableIdentifier ^^ {
case tableIndet =>
RefreshTable(tableIndet)
}