1. 程式人生 > >從零開始 TensorFlow softmax迴歸

從零開始 TensorFlow softmax迴歸

tf.cast 是轉換型別

from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('/tmp/data/',one_hot=True)

learning_rate = 0.01
training_epochs=25
batch_size=
100 display_step=1 x=tf.placeholder(tf.float32,[None,784]) y=tf.placeholder(tf.float32,[None,10]) W=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10])) predict=tf.nn.softmax(tf.matmul(x,W)+b) loss=tf.reduce_mean(-tf.reduce_sum(y*tf.log(predict),reduction_indices=1)) optimizer=tf.train.GradientDescentOptimizer(
learning_rate).minimize(loss) init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs): avg_loss=0. total_batch=int(mnist.train.num_examples/batch_size) for i in range(total_batch): batch_xs, batch_ys=
mnist.train.next_batch(batch_size) _, c =sess.run([optimizer,loss],feed_dict={x:batch_xs,y:batch_ys}) avg_loss+=c/total_batch print('Epoch:',epoch+1,'Loss:',avg_loss) correct_pre=tf.equal(tf.argmax(predict,1),tf.argmax(y,1)) accuracy=tf.reduce_mean(tf.cast(correct_pre,tf.float32)) print('correct_pre:',correct_pre) print('Accuracy:',accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))