1. 程式人生 > >從零開始 TensorFlow線性迴歸

從零開始 TensorFlow線性迴歸

from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
nr=np.random

learning_rate = 0.01
training_epochs=1000
display_step=50

train_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313
,7.997,5.654,9.27,3.1]) train_Y = np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] X=tf.placeholder('float') Y=tf.placeholder('float') W=tf.Variable(nr.randn(),name='weight') b=tf.Variable(nr.
randn(),name='bias') predict=tf.add(tf.multiply(X,W),b) loss=tf.reduce_sum(tf.pow(predict-Y,2)/(2*n_samples)) optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs)
: for x,y in zip(train_X,train_Y): sess.run(optimizer,feed_dict={X:x,Y:y}) if (epoch+1) % display_step==0: c=sess.run(loss,feed_dict={X:train_X,Y:train_Y}) print('Epoch:',epoch+1,'Loss:',c,'W:',sess.run(W),'b:',sess.run(b)) train_loss=sess.run(loss,feed_dict={X:train_X,Y:train_Y}) print('Finally,Loss:',train_loss,'W:',sess.run(W),'b:',sess.run(b)) plt.rcParams['font.sans-serif']=['SimHei'] #指定預設字型 SimHei為黑體 plt.rcParams['axes.unicode_minus']=False #顯示負號 fig=plt.figure() plt.plot(train_X,train_Y,'ro',label='原來的資料') plt.plot(train_X,sess.run(W) * train_X + sess.run(b),label='擬合數據') plt.legend() plt.show() test_X = np.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1]) test_Y = np.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03]) test_loss=sess.run(tf.reduce_sum(tf.pow(predict-Y,2))/(2*test_X.shape[0]),feed_dict={X:test_X,Y:test_Y}) print('testloss:',test_loss) print('abs(train_loss-test_loss):',abs(train_loss-test_loss)) fig=plt.figure() plt.plot(test_X,test_Y,'bo',label='測試資料') plt.plot(train_X,sess.run(W) * train_X + sess.run(b),label='擬合數據') plt.legend() plt.show()