1. 程式人生 > >Caffe的編譯(匹配顯示卡計算能力)

Caffe的編譯(匹配顯示卡計算能力)

環境:GTX1060(notebook) Ubuntu16.04-Desktop Anaconda3.0虛擬環境下的python2.7 CUDA8.0 CUDNN6.0

由於編譯安裝OpenCV 3比較複雜,直接使用sudo apt-get install libopencv-dev 安裝的2.4

根據官方說明http://caffe.berkeleyvision.org/installation.html安裝。附上我的caffe Makefile.config。注意:根據https://developer.nvidia.com/cuda-gpus查詢顯示卡的計算能力為6.1,CUDA_ARCH那裡沒有巴任意一行註釋

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#	You should not set this flag if you will be reading LMDBs with any
#	possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
		-gencode arch=compute_20,code=sm_21 \
		-gencode arch=compute_30,code=sm_30 \
		-gencode arch=compute_35,code=sm_35 \
		-gencode arch=compute_50,code=sm_50 \
		-gencode arch=compute_52,code=sm_52 \
		-gencode arch=compute_60,code=sm_60 \
		-gencode arch=compute_61,code=sm_61 \
		-gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /media/yuf/Data/software/matlab/Matlab/runfile
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 \
		/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/.conda/envs/normal-py27
PYTHON_INCLUDE := /home/yuf/anaconda3/include \
                  $(ANACONDA_HOME)/include \
		  $(ANACONDA_HOME)/include/python2.7 \
		  $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := /home/yuf/anaconda3/lib \
              $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /home/yuf/anaconda3/pkgs/hdf5-1.10.2-hba1933b_1/lib/

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

參考連結:http://www.voidcn.com/article/p-zfjsbvbo-bee.html

=======================更新(matlab介面問題)=======================

環境Matlab2014a

在剛剛的caffe目錄下make matcaffe編譯matlab介面

我使用的gcc為自帶的5.4版本,會警告使用4.7版本,並報錯:error: no matching function for call to remove_if......

但是換完後反而會出現如protobuf找不到的情況,最後換回了5.4,修改Makefile,在CXXFLAGS += -MMD -MP下一行新增:

CXXFLAGS += -std=c++11

編譯成功

執行make mattest

可能報錯:

MATLAB/R2014a/bin/glnxa64/../../sys/os/glnxa64/: version GLIBCXX_3.4.20 
not found

將原libstdc++.so.6備份

複製系統檔案到matlab路徑下 cp /usr/lib/x86_64-linux-gnu/libstdc++.so.6 path/to/matlab/sys/os/glnxa64/libstdc++.so.6.sys

建立連結 ln -s path/to/matlab/sys/os/glnxa64/libstdc++.so.6.sys path/to/matlab/sys/os/glnxa64/libstdc++.so.6

再執行又報錯:

matlab/+caffe/private/caffe_.mexa64: undefined symbol: _ZN2cv8imencodeERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEERKNS_11_InputArrayERSt6vectorIhSaIhEERKSB_IiSaIiEE

將path/to/matlab/bin/glnxa64下的libopencv_imgproc.so.2.4,libopencv_highgui.so.2.4,libopencv_core.so.2.4備份

複製系統檔案到matlab路徑下 cp /usr/lib/x86_64-linux-gnu/libopencv_imgproc.so.2.4 path/to/matlab/bin/glnxa64/libopencv_imgproc.so.2.4.sys

建立連結 ln -s path/to/matlab/bin/glnxa64/libopencv_imgproc.so.2.4.sys path/to/matlab/bin/glnxa64/libopencv_imgproc.so.2.4

另外兩個類似

修改連結後需要執行sudo ldconfig

再執行又報錯:

path/to/matlab/bin/glnxa64/libharfbuzz.so.0: undefined symbol: FT_Face_GetCharVariantIndex

先執行export LD_PRELOAD=$LD_PRELOAD:/usr/lib/x86_64-linux-gnu/libfreetype.so.6即可

 

將matlab下的+caffe拷貝到matlab工程目錄下執行應該是正常的(同樣要在執行./matlab之前使用同一使用者執行上述命令或者加到bashrc中)

 

參考連結:https://blog.csdn.net/fangbinwei93/article/details/52865461

http://www.cnblogs.com/laiqun/p/6031925.html

http://www.cnblogs.com/Erdos001/p/4593029.html

https://blog.csdn.net/weixin_28949825/article/details/79427512