Opencv3.4.3呼叫SSD caffe模型進行物體檢測
阿新 • • 發佈:2018-12-26
原始碼
#include <opencv2/opencv.hpp> #include <opencv2/dnn.hpp> #include <iostream> using namespace cv; using namespace cv::dnn; using namespace std; const size_t width = 300; const size_t height = 300; const float meanVal = 127.5; const float scaleFactor = 0.007843f; const char* classNames[] = { "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" }; String modelFile = "C:/Users/18301/Desktop/models_VGGNet_VOC0712Plus_SSD_300x300/models/VGGNet/VOC0712Plus/SSD_300x300/VGG_VOC0712Plus_SSD_300x300_iter_240000.caffemodel"; String model_text_file = "C:/Users/18301/Desktop/models_VGGNet_VOC0712Plus_SSD_300x300/models/VGGNet/VOC0712Plus/SSD_300x300/deploy.prototxt"; int main() { VideoCapture capture; capture.open(0); namedWindow("input", CV_WINDOW_AUTOSIZE); int w = capture.get(CAP_PROP_FRAME_WIDTH); int h = capture.get(CAP_PROP_FRAME_HEIGHT); printf("frame width : %d, frame height : %d", w, h); // set up net Net net = readNetFromCaffe(model_text_file, modelFile); Mat frame; //while (capture.read(frame)) //注意:這裡提供了兩種模式,呼叫攝像頭的時候把該句取消註釋即可 while (1) { frame = imread("C:/Users/18301/Desktop/car.jpg"); imshow("input", frame); //預測 Mat inputblob = blobFromImage(frame, scaleFactor, Size(width, height), meanVal, false); net.setInput(inputblob, "data"); Mat detection = net.forward("detection_out"); //檢測 Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); float confidence_threshold = 0.3; for (int i = 0; i < detectionMat.rows; i++) { float confidence = detectionMat.at<float>(i, 2); if (confidence > confidence_threshold) { size_t objIndex = (size_t)(detectionMat.at<float>(i, 1)); float tl_x = detectionMat.at<float>(i, 3) * frame.cols; float tl_y = detectionMat.at<float>(i, 4) * frame.rows; float br_x = detectionMat.at<float>(i, 5) * frame.cols; float br_y = detectionMat.at<float>(i, 6) * frame.rows; Rect object_box((int)tl_x, (int)tl_y, (int)(br_x - tl_x), (int)(br_y - tl_y)); rectangle(frame, object_box, Scalar(0, 0, 255), 2, 8, 0); putText(frame, format("%s", classNames[objIndex]), Point(tl_x, tl_y), FONT_HERSHEY_SIMPLEX, 1.0, Scalar(255, 0, 0), 2); } } imshow("ssd-video-demo", frame); char c = waitKey(5); if (c == 27) { // ESC退出 break; } } capture.release(); waitKey(0); return 0; }
實驗結果
不過說實話效果不是太好,因為這個SSD模型是基於VGG16的,可能特徵表徵能力不是太強吧~視訊檢測就更差了,就不展示了