PyTorch中的資料查詢和篩選
阿新 • • 發佈:2018-12-30
本文原始碼基於版本1.0,互動介面基於0.4.1
import torch
按照指定軸上的座標進行過濾
index_select()
沿著某tensor的一個軸dim篩選若干個座標
>>> x = torch.randn(3, 4) # 目標矩陣
>>> x
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
[-0.4664, 0.2647, -0.1228, -1.1068],
[-1.1734, -0.6571, 0.7230, -0.6004]])
>>> indices = torch.tensor([0, 2]) # 在軸上篩選座標
>>> torch.index_select(x, dim=0, indices) # 指定篩選物件、軸、篩選座標
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
[-1.1734, -0.6571, 0.7230, -0.6004]])
>>> torch.index_select(x, dim=1, indices)
tensor([[ 0.1427, -0.5414],
[-0.4664, -0.1228],
[-1.1734, 0.7230 ]])
where()
用於將兩個broadcastable的tensor組合成新的tensor,類似於c++中的三元操作符“?:”
>>> x = torch.randn(3, 2)
>>> y = torch.ones(3, 2)
>>> torch.where(x > 0, x, y)
tensor([[1.4013, 1.0000],
[1.0000, 0.9267],
[1.0000, 0.4302]])
>>> x
tensor([[ 1.4013, -0.9960],
[-0.3715, 0.9267],
[-0.7163, 0.4302]])
指定條件返回01-tensor
>>> x = torch.arange(5)
>>> x
tensor([0, 1, 2, 3, 4])
>>> torch.gt(x,1) # 大於
tensor([0, 0, 1, 1, 1], dtype=torch.uint8)
>>> x>1 # 大於
tensor([0, 0, 1, 1, 1], dtype=torch.uint8)
>>> torch.ne(x,1) # 不等於
tensor([1, 0, 1, 1, 1], dtype=torch.uint8)
>>> x!=1 # 不等於
tensor([1, 0, 1, 1, 1], dtype=torch.uint8)
>>> torch.lt(x,3) # 小於
tensor([1, 1, 1, 0, 0], dtype=torch.uint8)
>>> x<3 # 小於
tensor([1, 1, 1, 0, 0], dtype=torch.uint8)
>>> torch.eq(x,3) # 等於
tensor([0, 0, 0, 1, 0], dtype=torch.uint8)
>>> x==3 # 等於
tensor([0, 0, 0, 1, 0], dtype=torch.uint8)
返回索引
>>> x = torch.arange(5)
>>> x # 1維
tensor([0, 1, 2, 3, 4])
>>> torch.nonzero(x)
tensor([[1],
[2],
[3],
[4]])
>>> x = torch.Tensor([[0.6, 0.0, 0.0, 0.0],[0.0, 0.4, 0.0, 0.0],[0.0, 0.0, 1.2, 0.0],[0.0, 0.0, 0.0,-0.4]])
>>> x # 2維
tensor([[ 0.6000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.4000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 1.2000, 0.0000],
[ 0.0000, 0.0000, 0.0000, -0.4000]])
>>> torch.nonzero(x)
tensor([[0, 0],
[1, 1],
[2, 2],
[3, 3]])
藉助nonzero()我們可以返回符合某一條件的index(https://stackoverflow.com/questions/47863001/how-pytorch-tensor-get-the-index-of-specific-value)
>>> x=torch.arange(12).view(3,4)
>>> x
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> (x>4).nonzero()
tensor([[1, 1],
[1, 2],
[1, 3],
[2, 0],
[2, 1],
[2, 2],
[2, 3]])