演算法——Week10
207. Course Schedule
There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
Example 1:
Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.
Note:
- The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
- You may assume that there are no duplicate edges in the input prerequisites.
解題思路
題目的本質是判斷有向圖中是否有環(不是所有點是否可達),如果有環則返回flase,無環返回true。解題時,我選擇用拓撲排序來判斷是否有環路存在。其基本思想是,選擇圖中所有入度為0的頂點,從圖中刪除該頂點和所有以它為起點的有向邊(這些有向邊的終點的入度-1)。如果最終圖為空,則無環,否則有環。
程式碼如下:
class Solution {
public:
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
graph.resize(numCourses);
tag.resize(numCourses);
vector<int> in_degree(numCourses, 0);
for(int i = 0; i < prerequisites.size(); i++) {
int first = prerequisites[i].first;
int second = prerequisites[i].second;
graph[second].push_back(first);
in_degree[prerequisites[i].first]++;
}
bool exist = true;
vector<int> zero_degree;
for(int i = 0; i < numCourses; i++) {
if(in_degree[i] == 0) {
zero_degree.push_back(i);
}
}
if(zero_degree.size() == 0) {
exist = false;
return exist;
}
queue<int> q;
for(int i = 0; i < zero_degree.size(); i++) {
q.push(zero_degree[i]);
}
int count = 0;
while(q.size() != 0) {
int v = q.front(); // 從佇列中取出一個頂點
q.pop();
++count;
for(int i = 0; i < graph[v].size(); i++) {
in_degree[graph[v][i]] = in_degree[graph[v][i]] - 1;
if(in_degree[graph[v][i]] == 0) {
q.push(graph[v][i]);
}
}
}
if(count != numCourses) {
exist = false;
}
return exist;
}
private:
vector<vector<int>> graph;
vector<int> tag;
};
注:
c++中的二維向量初始化要注意。我是先定義了一個空二維向量,再使用之前用resize()函式進行了初始化和賦值。