[學習筆記] 素數測試與質因數分解 - 學習筆記
阿新 • • 發佈:2018-12-30
copy了luogu上目前rk1的板子
分解質因數其中有一段還不知道在幹嘛:
列舉k是大於等於2的2的冪,每次初始化
,然後
。然後每做完一個k就檢查是否
。其中
是
。
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define ull unsigned lint
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define gc getchar()
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
inline lint inn()
{
lint x,ch;while((ch=gc)<'0'||ch>'9');
x=ch^'0';while((ch=gc)>='0'&&ch<='9')
x=(x<<1)+(x<<3)+(ch^'0');return x;
}
namespace RHO_space{
const int BAS_cnt=6;int Bas[BAS_cnt]={2,3,7,23,61,24251};
inline lint tms(lint a,lint b,lint m) { return (lint)((__int128)a*b%m); }
inline lint gcd(lint a,lint b) { return a?gcd(b%a,a):b; }
inline lint fast_pow(lint x,lint k,lint m,lint ans=1)
{ for(;k;k>>=1,x=tms(x,x,m)) (k&1)?ans=tms(ans,x,m):0;return ans; }
inline bool Miller(lint x)
{
//if(x==46856248255981ll||x<2) return false;//???
if(x<2) return false;
rep(i,0,BAS_cnt-1) if(x%Bas[i]==0) return x==Bas[i];
lint b=x-1;int t=0;while(!(b&1)) b>>=1,t++;
rep(i,0,BAS_cnt-1)
{
if(Bas[i]>x) break;
lint cur=fast_pow(Bas[i],b,x),las=cur;
rep(j,1,t)
{
cur=tms(cur,cur,x);
if(cur==1&&las!=1&&las!=x-1) return false;
las=cur;
}
if(cur!=1) return false;
}
return true;
}
inline lint gabs(lint x) { return x<0?-x:x; }
inline lint G(lint x,lint n,lint a) { lint t=tms(x,x,n)+a;return t>=n?t-n:t; }
const int M=(1<<7)-1;
struct RAND{
ull x;RAND() { x=0; }
inline ull operator()() { return ((x+=998244353)*=1000000007)^=19260817; }
}rnd;
inline lint Rho(lint n)
{
if(n%2==0) return 2;if(n%3==0) return 3;if(n%5==0) return 5;
lint x=0,y=0,t=1,q=1,c=rnd()%(n-1)+1;
for(int k=2;;k<<=1,y=x,q=1)
{
rep(i,1,k)
{
x=G(x,n,c),q=tms(q,gabs(x-y),n);
if(!(i&M)) { if((t=gcd(q,n))>1) break; }
}
if(t>1||(t=gcd(q,n))>1) break;
}
return t;
}
lint mxp;
inline int Find(lint x)
{
if(x<=mxp||x==1) return 0;if(Miller(x)) return mxp=max(mxp,x),0;
lint t=x;while(t==x) t=Rho(t);while(x%t==0) x/=t;return Find(x),Find(t);
}
inline lint solve(lint x) { return mxp=0,Find(x),mxp; }
}using RHO_space::solve;
int main()
{
for(lint T=inn();T;T--)
{
lint n=inn(),ans=solve(n);
if(ans==n) printf("Prime\n");
else printf("%lld\n",ans);
}
return 0;
}