1. 程式人生 > >tensorflow之inception_v3模型的部分載入及權重的部分恢復(23)---《深度學習》

tensorflow之inception_v3模型的部分載入及權重的部分恢復(23)---《深度學習》

大家都知道,在載入模型及對應的權重進行訓練的時候,我們可以整個使用所提供的模型,但是有時候呢?所提供的模型不能很好的滿足我們的要求,有時候我們只需要模型的前幾層然後進行對應的權重賦值,這時候,我們應該怎麼辦呢?tensorflow為我們提供了兩種方法(探索了好久才找到解決辦法,不過感覺蠻有用的,分享給大家啦!):

1)在載入模型的時候,使用final_endpoint引數,指定模型階段點:

import tensorflow.contrib.slim.nets as nets
#from tensorflow.contrib.slim.nets.inception import inception_v3, inception_v3_arg_scope
import numpy as np import os height = 299 width = 299 channels = 3 num_classes=1001 X = tf.placeholder(tf.float32, shape=[None, height, width, channels]) y = tf.placeholder(tf.float32,shape=[None,182]) with slim.arg_scope(nets.inception.inception_v3_arg_scope()): logits, end_points = nets.inception
.inception_v3_base(X,final_endpoint = "Mixed_7a") variables_to_restore=slim.get_variables_to_restore() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver=tf.train.Saver(variables_to_restore) saver.restore(sess,os.path.join("E:\\","inception_v3.ckpt")) print("Done"
)

2)在恢復模型的時候,部分層不使用ckpt檔案中提供的引數:

#-*-coding=utf-8-*-
import tensorflow as tf
import tensorflow.contrib.slim as slim
import tensorflow.contrib.slim.nets as nets
#from tensorflow.contrib.slim.nets.inception import inception_v3, inception_v3_arg_scope
import numpy as np
import os

height = 299
width = 299
channels = 3
num_classes=1001

X = tf.placeholder(tf.float32, shape=[None, height, width, channels])
y = tf.placeholder(tf.float32,shape=[None,182])
with slim.arg_scope(nets.inception.inception_v3_arg_scope()):
    logits, end_points = nets.inception.inception_v3(X, num_classes=num_classes,is_training=False)
with tf.Session() as sess:
    exclude=['Mixed_7c','Mixed_7b','AuxLogits','AuxLogits','Logits','Predictions']
    variables_to_restore=slim.get_variables_to_restore(exclude=exclude)
    sess.run(tf.global_variables_initializer())
    saver=tf.train.Saver(variables_to_restore)
    saver.restore(sess,os.path.join("E:\\","inception_v3.ckpt"))
    print("Done")