kNN k近鄰演算法的python實現
阿新 • • 發佈:2019-01-03
Machine Learning in Action 這本書中演算法的實現
#!/usr/bin/python # -*- coding: utf-8 -*- from numpy import* import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def createDataSet():#生成訓練集 group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels group,labels=createDataSet() # print group,labels def classify0(inX,dataSet,labels,k):#kNN演算法 dataSetSize=dataSet.shape[0] diffMat=tile(inX,(dataSetSize,1))-dataSet # print diffMat sqDiffMat=diffMat**2 sqDistances=sqDiffMat.sum(axis=1) # print sqDistances distances=sqDistances**0.5 sortedDistIndicies=distances.argsort() #print distances,sortedDistIndicies classCount={} for i in range(k): voteIlabel=labels[sortedDistIndicies[i]] classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 # print classCount sortedClassCount=sorted(classCount.iteritems(), key=operator.itemgetter(1),reverse=True) # print sortedClassCount return sortedClassCount[0][0] def file2matrix(filename): #從檔案讀資料 fr=open(filename) arrayOLines=fr.readlines()#讀出每一行 #print(arrayOLines) numberOfLines=len(arrayOLines)#行數 returnMat=zeros((numberOfLines,3))#0矩陣Numpy classLabelVector=[] index=0 for line in arrayOLines: line=line.strip() #去掉回車 #print line listFromLine=line.split('\t') #把整行資料分割為元素列表 #print listFromLine returnMat[index,:]=listFromLine[0:3] classLabelVector.append(int(listFromLine[-1])) #-1為最後一列 index+=1 return returnMat,classLabelVector def autuNorm(dataSet): #資料正則化:new=(old-min)/(max-min) minVals=dataSet.min(0) maxVals=dataSet.max(0) #print maxVals ranges=maxVals-minVals normDataSet=zeros(shape(dataSet)) m=dataSet.shape[0] normDataSet=dataSet-tile(minVals,(m,1)) normDataSet=normDataSet/tile(ranges,(m,1)) return normDataSet,ranges,minVals def datingClassTest(): #測試訓練集精度 hoRatio=0.10 datingDataMat,datingLables=file2matrix('datingTestSet2.txt') normMat,ranges,minVals=autuNorm(datingDataMat) m=normMat.shape[0] numTestVecs=int(m*hoRatio) errorCount=0.0 for i in range(numTestVecs): classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],\ datingLabels[numTestVecs:m],3) print "result: %d ,real: %d"\ %(classifierResult,datingLabels[i]) if(classifierResult!=datingLabels[i]):errorCount+=1.0 print"error rates %f" %(errorCount/float(numTestVecs)) def img2vector(filename): #將32*32的影象資料轉換為一行的向量 returnVect=zeros((1,1024)) fr=open(filename) for i in range(32): lineStr=fr.readline() for j in range(32): returnVect[0,32*i+j]=int(lineStr[j]) return returnVect def handwritingClassTest(): #手寫數字識別 hwLabels = [] trainingFileList = listdir('trainingDigits') m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr) testFileList = listdir('testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr) if (classifierResult != classNumStr): errorCount += 1.0 print "\nthe total number of errors is: %d" % errorCount print "\nthe total error rate is: %f" % (errorCount/float(mTest)) #print classify0([0,0],group,labels,3) datingDataMat,datingLabels=file2matrix('datingTestSet2.txt') # 畫出影象分析資料特徵 # fig=plt.figure() # ax=fig.add_subplot(111) # ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels), # 15.0*array(datingLabels)) # plt.show() #datingClassTest() handwritingClassTest()