根據人臉預測年齡性別和情緒 (python + keras)(三)
阿新 • • 發佈:2019-01-04
* 背景 *
1、 目前人臉識別已經廣泛運用,即使在視訊流裡面也能流暢識別出來,無論是對安防還是其他體驗類產品都有很大的影響。研究完人臉識別後,對於年齡的預測,性別的判斷以及根據面部動作識別表情也開始實現,以後可能還會學習顏值預測和是否帶眼睛戴帽子什麼的。面部表情識別技術主要的應用領域包括人機互動、智慧控制、安全、醫療、通訊等領域。顏值預測可以運用於未來的虛擬化妝,客戶可以看見化妝後的自己,滿意後再實際化妝出來的效果最能讓客戶開心。
實現
在哪裡實現?
第一,在視訊流裡實時識別,人臉識別的人臉對齊過程實現,人臉檢測完之後將檢測結果傳參給預測模型。
第二、直接給圖片先檢測再預測
程式碼實現
demo.py
import os
import cv2
import time
import numpy as np
import argparse
import dlib
from contextlib import contextmanager
from wide_resnet import WideResNet
from keras.utils.data_utils import get_file
from keras.models import model_from_json
pretrained_model = "https://github.com/yu4u/age-gender-estimation/releases/download/v0.5/weights.18-4.06.hdf5"
modhash = '89f56a39a78454e96379348bddd78c0d'
emotion_labels = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']
# load json and create model arch
json_file = open('model.json','r')
loaded_model_json = json_file.read()
json_file.close()
#將json重構為model結構
model = model_from_json(loaded_model_json)
# load weights into new model
model.load_weights('model.h5')
def predict_emotion(face_image_gray): # a single cropped face
resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
image = resized_img.reshape(1, 1, 48, 48)
im = cv2.resize(resized_img,(90,100))
cv2.imwrite('face.bmp', im)
list_of_list = model.predict(image, batch_size=1, verbose=1)
angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]
return [angry, fear, happy, sad, surprise, neutral]
def get_args():
parser = argparse.ArgumentParser(description="This script detects faces from web cam input, "
"and estimates age and gender for the detected faces.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
#改成自己的地址
parser.add_argument("--weight_file", type=str, default="./pretrained_models/weights.18-4.06.hdf5",
help="path to weight file (e.g. weights.18-4.06.hdf5)")
parser.add_argument("--depth", type=int, default=16,
help="depth of network")
parser.add_argument("--width", type=int, default=8,
help="width of network")
args = parser.parse_args()
return args
def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX,
font_scale=1, thickness=2):
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
x, y = point
cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness)
@contextmanager
def video_capture(*args, **kwargs):
cap = cv2.VideoCapture(*args, **kwargs)
try:
yield cap
finally:
cap.release()
def yield_images():
# capture video
with video_capture(0) as cap:
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
while True:
# get video frame
ret, img = cap.read()
if not ret:
raise RuntimeError("Failed to capture image")
yield img
def main():
biaoqing = ""
args = get_args()
depth = args.depth
k = args.width
weight_file = args.weight_file
print(weight_file)
#第一次執行時會自動從給的網址下載weights.18-4.06.hdf5模型(190M左右)
if not weight_file:
weight_file = get_file("weights.18-4.06.hdf5", pretrained_model, cache_subdir="pretrained_models",
file_hash=modhash, cache_dir=os.path.dirname(os.path.abspath(__file__)))
# for face detection
detector = dlib.get_frontal_face_detector()
# load model and weights
img_size = 64
model = WideResNet(img_size, depth=depth, k=k)()
model.load_weights(weight_file)
for img in yield_images():
#img = cv2.imread("1.jpg")
input_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_h, img_w, _ = np.shape(input_img)
#print("h w ",img_h,img_w)
emotions = []
# Draw a rectangle around the faces
# detect faces using dlib detector
detected = detector(img_gray, 0)
faces = np.empty((len(detected), img_size, img_size, 3))
#print("dector",detected)
if len(detected) > 0:
for i, d in enumerate(detected):
#print("i,d =",i,d)
x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height()
#print("w h =",w,h)
xw1 = max(int(x1 - 0.4 * w), 0)
yw1 = max(int(y1 - 0.4 * h), 0)
xw2 = min(int(x2 + 0.4 * w), img_w - 1)
yw2 = min(int(y2 + 0.4 * h), img_h - 1)
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
#cv2.rectangle(img, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
faces[i, :, :, :] = cv2.resize(img[yw1:yw2 + 1, xw1:xw2 + 1, :], (img_size, img_size))
#print("faces ",faces)
face_image_gray = img_gray[y1:y1 + y2, x1:x1 + x2]
angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)
emotions = [angry, fear, happy, sad, surprise, neutral]
m = emotions.index(max(emotions))
for index, val in enumerate(emotion_labels):
if (m == index):
biaoqing = val
# predict ages and genders of the detected faces
results = model.predict(faces)
predicted_genders = results[0]
ages = np.arange(0, 101).reshape(101, 1)
predicted_ages = results[1].dot(ages).flatten()
# draw results
for i, d in enumerate(detected):
#print("表情",biaoqing)
label = "{}, {},{}".format(int(predicted_ages[i]),
"F" if predicted_genders[i][0] > 0.5 else "M" ,biaoqing)
draw_label(img, (d.left(), d.top()), label)
cv2.imshow("result", img)
#等待3ms
key = cv2.waitKey(3)
if key == 27:
break
if __name__ == '__main__':
main()
wide_resnet.py
# This code is imported from the following project: https://github.com/asmith26/wide_resnets_keras
import logging
import sys
import numpy as np
from keras.models import Model
from keras.layers import Input, Activation, add, Dense, Flatten, Dropout
from keras.layers.convolutional import Conv2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.regularizers import l2
from keras import backend as K
sys.setrecursionlimit(2 ** 20)
np.random.seed(2 ** 10)
class WideResNet:
def __init__(self, image_size, depth=16, k=8):
self._depth = depth
self._k = k
self._dropout_probability = 0
self._weight_decay = 0.0005
self._use_bias = False
self._weight_init = "he_normal"
if K.image_dim_ordering() == "th":
logging.debug("image_dim_ordering = 'th'")
self._channel_axis = 1
self._input_shape = (3, image_size, image_size)
else:
logging.debug("image_dim_ordering = 'tf'")
self._channel_axis = -1
self._input_shape = (image_size, image_size, 3)
# Wide residual network http://arxiv.org/abs/1605.07146
def _wide_basic(self, n_input_plane, n_output_plane, stride):
def f(net):
# format of conv_params:
# [ [kernel_size=("kernel width", "kernel height"),
# strides="(stride_vertical,stride_horizontal)",
# padding="same" or "valid"] ]
# B(3,3): orignal <<basic>> block
conv_params = [[3, 3, stride, "same"],
[3, 3, (1, 1), "same"]]
n_bottleneck_plane = n_output_plane
# Residual block
for i, v in enumerate(conv_params):
if i == 0:
if n_input_plane != n_output_plane:
net = BatchNormalization(axis=self._channel_axis)(net)
net = Activation("relu")(net)
convs = net
else:
convs = BatchNormalization(axis=self._channel_axis)(net)
convs = Activation("relu")(convs)
convs = Conv2D(n_bottleneck_plane, kernel_size=(v[0], v[1]),
strides=v[2],
padding=v[3],
kernel_initializer=self._weight_init,
kernel_regularizer=l2(self._weight_decay),
use_bias=self._use_bias)(convs)
else:
convs = BatchNormalization(axis=self._channel_axis)(convs)
convs = Activation("relu")(convs)
if self._dropout_probability > 0:
convs = Dropout(self._dropout_probability)(convs)
convs = Conv2D(n_bottleneck_plane, kernel_size=(v[0], v[1]),
strides=v[2],
padding=v[3],
kernel_initializer=self._weight_init,
kernel_regularizer=l2(self._weight_decay),
use_bias=self._use_bias)(convs)
# Shortcut Connection: identity function or 1x1 convolutional
# (depends on difference between input & output shape - this
# corresponds to whether we are using the first block in each
# group; see _layer() ).
if n_input_plane != n_output_plane:
shortcut = Conv2D(n_output_plane, kernel_size=(1, 1),
strides=stride,
padding="same",
kernel_initializer=self._weight_init,
kernel_regularizer=l2(self._weight_decay),
use_bias=self._use_bias)(net)
else:
shortcut = net
return add([convs, shortcut])
return f
# "Stacking Residual Units on the same stage"
def _layer(self, block, n_input_plane, n_output_plane, count, stride):
def f(net):
net = block(n_input_plane, n_output_plane, stride)(net)
for i in range(2, int(count + 1)):
net = block(n_output_plane, n_output_plane, stride=(1, 1))(net)
return net
return f
# def create_model(self):
def __call__(self):
logging.debug("Creating model...")
assert ((self._depth - 4) % 6 == 0)
n = (self._depth - 4) / 6
inputs = Input(shape=self._input_shape)
n_stages = [16, 16 * self._k, 32 * self._k, 64 * self._k]
conv1 = Conv2D(filters=n_stages[0], kernel_size=(3, 3),
strides=(1, 1),
padding="same",
kernel_initializer=self._weight_init,
kernel_regularizer=l2(self._weight_decay),
use_bias=self._use_bias)(inputs) # "One conv at the beginning (spatial size: 32x32)"
# Add wide residual blocks
block_fn = self._wide_basic
conv2 = self._layer(block_fn, n_input_plane=n_stages[0], n_output_plane=n_stages[1], count=n, stride=(1, 1))(conv1)
conv3 = self._layer(block_fn, n_input_plane=n_stages[1], n_output_plane=n_stages[2], count=n, stride=(2, 2))(conv2)
conv4 = self._layer(block_fn, n_input_plane=n_stages[2], n_output_plane=n_stages[3], count=n, stride=(2, 2))(conv3)
batch_norm = BatchNormalization(axis=self._channel_axis)(conv4)
relu = Activation("relu")(batch_norm)
# Classifier block
pool = AveragePooling2D(pool_size=(8, 8), strides=(1, 1), padding="same")(relu)
flatten = Flatten()(pool)
predictions_g = Dense(units=2, kernel_initializer=self._weight_init, use_bias=self._use_bias,
kernel_regularizer=l2(self._weight_decay), activation="softmax",
name="pred_gender")(flatten)
predictions_a = Dense(units=101, kernel_initializer=self._weight_init, use_bias=self._use_bias,
kernel_regularizer=l2(self._weight_decay), activation="softmax",
name="pred_age")(flatten)
model = Model(inputs=inputs, outputs=[predictions_g, predictions_a])
return model
def main():
model = WideResNet(64)()
model.summary()
if __name__ == '__main__':
main()
準備工作
環境:python3 TensorFlow-gpu numpy keras dlib
模型:model.h5(表情預測模型) model.json(表情預測模型的json型別) weights.18-4.06.hdf5(性別年齡預測模型)
[模型下載](https://download.csdn.net/download/hpymiss/10490349)
執行
python demo.py
效果
處理一幀一秒以內,視訊流裡能流暢執行
不足之處:模型的精度還不夠,需要進行微調,如何改進還待研究
硬體
- GPU:
name: GeForce GTX 960M major: 5 minor: 0 memoryClockRate(GHz): 1.176
pciBusID: 0000:02:00.0
totalMemory: 4.00GiB freeMemory: 3.34GiB - 處理器 (i7)