keras 實現簡單卷積神經網路 和 視覺化
阿新 • • 發佈:2019-01-04
from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras import backend as K from keras import regularizers from keras.utils import plot_model from keras.callbacks import TensorBoard # dimensions of our images. img_width, img_height = 113, 113 train_data_dir = 'data2/train' validation_data_dir = 'data2/validation' nb_train_samples = 1035 nb_validation_samples = 176 epochs = 3 batch_size = 16 if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) model = Sequential() model.add(Conv2D(16, (3, 3), input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.6)) model.add(Dense(1, input_dim=64, kernel_regularizer=regularizers.l2(0.01), activity_regularizer=regularizers.l1(0.01))) #model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) plot_model(model, to_file='model.png') # this is the augmentation configuration we will use for training train_datagen = ImageDataGenerator( rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) # this is the augmentation configuration we will use for testing: # only rescaling test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') history = model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, callbacks=[TensorBoard(log_dir='./tmp/log')], validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size) model.save('model_weight.h5') #model.save_weights('first_try.h5') #matplotlib視覺化 ,也可tensorboard視覺化 import matplotlib.pyplot as plt fig = plt.figure()#新建一張圖 plt.plot(history.history['acc'],label='training acc') plt.plot(history.history['val_acc'],label='val acc') plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(loc='lower right') plt.show() fig.savefig('VGG16'+'test'+'acc.png') fig = plt.figure() plt.plot(history.history['loss'],label='training loss') plt.plot(history.history['val_loss'], label='val loss') plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(loc='upper right') plt.show() fig.savefig('VGG16'+'test2'+'loss.png')