AVL樹實現與分析
阿新 • • 發佈:2019-01-05
一、背景知識
AVL樹是高度平的二叉搜尋樹,它能降低二叉樹的高度,減少樹的平均搜尋長度.
二、AVL樹的性質
1、左子樹和右子樹的高度差的絕對值不超過1
2、樹中的每個左子樹和右子樹都是AVL樹
3、每個節點都有一個平衡因子(balance factor--bf),任一節點的平衡因子都為-1,0,1。(每個節點的平衡因子等於右子樹的高度減去左子樹的高度)
三、AVL的效率
一棵AVL樹有N個節點,高度可以保持在log2n,插入/刪除/查詢的時間複雜度也是log2n.
(注:log2n表示log以2為底n的對數。)
四、AVL的實現(程式碼及分析)
AVL樹(K/V)的結點
AVL樹的旋轉template<class K,class T> struct AVLTreeNode { K _key; //搜尋的關鍵字 T _value; //數值 int _bf; //平衡因子 AVLTreeNode<K, T>* _left; AVLTreeNode<K, T>* _right; AVLTreeNode<K, T>* _parent; AVLTreeNode(const K& key, const T& value) :_key(key) , _value(value) , _bf(0) , _left(NULL) , _right(NULL) , _parent(NULL) {} };
當增加一個元素,如果破壞了-1,0,1這樣的平衡因子的時候,就需要通過旋轉來修改平衡因子。
程式碼實現(左單旋轉)
void RotateL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; parent->_right = subRL; if (subRL) //判斷 subRL->_parent = parent; subR->_left = parent; Node* ppNode = parent->_parent; parent->_parent = subR; if (ppNode == NULL) { _root = subR; subR->_parent = NULL; } else { if (ppNode->_left == parent) ppNode->_left = subR; else if (ppNode->_right == parent) ppNode->_right = subR; subR->_parent = ppNode; } subR->_bf = parent->_bf = 0; }
右單旋轉
右單旋轉(程式碼實現)
左右雙旋void RotateR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; parent->_left = subLR; if (subLR) subLR->_parent = parent; subL->_right = parent; Node* ppNode = parent->_parent; //儲存parent的父親 parent->_parent = subL; if (ppNode == NULL) { _root = subL; subL->_parent = NULL; } else { if (ppNode->_left == parent) { ppNode->_left = subL; } else if (ppNode->_right == parent) { ppNode->_right = subL; } subL->_parent = ppNode; } parent->_bf = 0; subL->_bf = 0; }
左右雙旋實現:
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)
{
subLR->_bf = parent->_bf = subL->_bf = 0;
}
else if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
subLR->_bf = 0;
}
else//bf == -1
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 1;
}
}
右左雙旋轉
程式碼實現:
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);//先右單旋轉
RotateL(parent);//整體左單旋
if (bf == 0)
{
parent->_bf = subRL->_bf = 0;
}
else if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
subRL->_bf = 0;
}
else // bf == -1
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
}
AVL樹的所有程式碼:
#include<string>
template<class K,class T>
struct AVLTreeNode
{
K _key;
T _value;
int _bf;
AVLTreeNode<K, T>* _left;
AVLTreeNode<K, T>* _right;
AVLTreeNode<K, T>* _parent;
AVLTreeNode(const K& key, const T& value)
:_key(key)
, _value(value)
, _bf(0)
, _left(NULL)
, _right(NULL)
, _parent(NULL)
{}
};
template<class K,class T>
class AVLTree
{
typedef AVLTreeNode<K, T> Node;
protected:
Node * _root;
public:
AVLTree()
:_root(NULL)
{}
~AVLTree()
{}
void Insert(const K& key, const T& value)//AVL樹的插入
{
if (_root == NULL)
{
_root = new Node(key, value);
return;
}
Node* cur = _root;
Node* parent = NULL;
while (cur)
{
if (key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else if (key >cur->_key)
{
parent = cur;
cur = cur->_right;
}
else
break;
}
cur = new Node(key, value);
if (parent->_key < key)
{
parent->_right = cur;
cur->_parent = parent;
}
else if (parent->_key > key)
{
parent->_left = cur;
cur->_parent = parent;
}
//平衡平衡因子
while (parent)
{
if (cur == parent->_left)
parent->_bf--;
else if (cur == parent->_right)
parent->_bf++;
if (parent->_bf == 0)
break;
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = cur->_parent;
}
else //
{
if (parent->_bf == -2)
{
Node* subL = parent->_left;
if (subL->_bf == -1)
RotateR(parent);
else
RotateLR(parent);
}
else if (parent->_bf == 2)
{
Node* subR = parent->_right;
if (subR->_bf == 1)
RotateL(parent);
else
RotateRL(parent);
}
break;
}
}
return;
}
void InOrder() //中序遍歷
{
InOrder(_root);
}
bool IsBalance() //判斷是否平衡
{
int height = 0;
return IsBalance(_root, height);
}
size_t Height() //求樹的高度
{
Height(_root);
}
protected:
bool IsBalance(Node* root, int& height)
{
if (root == NULL)
{
height = 0;
return true;
}
int left, right ;
if (IsBalance(root->_left, left) && IsBalance(root->_right, right)
&& abs(right - left) < 2)
{
height = left < right ? right + 1 : left + 1;
if (root->_bf != right - left)
{
cout << "平衡因子異常" << root->_key << endl;
return false;
}
return true;
}
else
return false;
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
subL->_right = parent;
Node* ppNode = parent->_parent; //儲存parent的父親
parent->_parent = subL;
if (ppNode == NULL)
{
_root = subL;
subL->_parent = NULL;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
if (ppNode->_right == parent)
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
parent->_bf = 0;
subL->_bf = 0;
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
Node* ppNode = parent->_parent;
parent->_parent = subR;
if (ppNode == NULL)
{
_root = subR;
subR->_parent = NULL;
}
else
{
if (ppNode->_left == parent)
ppNode->_left = subR;
else if (ppNode->_right == parent)
ppNode->_right = subR;
subR->_parent = ppNode;
}
subR->_bf = parent->_bf = 0;
}
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == 0)
{
parent->_bf = subRL->_bf = 0;
}
else if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
subRL->_bf = 0;
}
else // bf == -1
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
}
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)
{
subLR->_bf = parent->_bf = subL->_bf = 0;
}
else if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
subLR->_bf = 0;
}
else//bf == -1
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 1;
}
}
void InOrder(Node* root)
{
if (root == NULL)
return;
InOrder(root->_left);
cout << root->_value << " ";
InOrder(root->_right);
}
size_t Height(Node* root)
{
if (root == NULL)
return 0;
int left = Height(root->_left);
int right = Height(root->_right);
return left < right ? right + 1 : left + 1;
}
};
AVL樹雖然實用性和效率並不是十分高,但是瞭解其實現過程,對紅黑樹、以及相關效能更高的樹有著鋪墊作用。