cf121C. Lucky Permutation(康託展開)
阿新 • • 發佈:2019-01-05
題意
Sol
由於階乘的數量增長非常迅速,而\(k\)又非常小,那麼顯然最後的序列只有最後幾位會發生改變。
前面的位置都是\(i = a[i]\)。那麼前面的可以直接數位dp/爆搜,後面的部分是經典問題,可以用逆康託展開計算。
#include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define int long long #define LL long long #define Fin(x) {freopen(#x".in","r",stdin);} #define Fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int MAXN = 1e6 + 1, mod = 1e9 + 7, INF = 1e9 + 10; const double eps = 1e-9; template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;} template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;} template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;} template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);} template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;} template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;} template <typename A> inline void debug(A a){cout << a << '\n';} template <typename A> inline LL sqr(A x){return 1ll * x * x;} inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, K, fac[MAXN]; vector<int> res; int find(int x) { sort(res.begin(), res.end()); int t = res[x]; res.erase(res.begin() + x); return t; } bool check(int x) { while(x) { if((x % 10) != 4 && (x % 10) != 7) return 0; x /= 10; } return 1; } int ans; void dfs(int x, int Lim) {//計算1 - lim中只包含4 7的數量 if(x > Lim) return ; if(x != 0) ans++; dfs(x * 10 + 4, Lim); dfs(x * 10 + 7, Lim); } signed main() { N = read(); K = read() - 1; int T = -1; fac[0] = 1; for(int i = 1; i <= N;i++) { fac[i] = i * fac[i - 1]; res.push_back(N - i + 1); if(fac[i] > K) {T = i; break;} } if(T == -1) {puts("-1"); return 0;} dfs(0, N - T); for(int i = T; i >= 1; i--) { int t = find(K / fac[i - 1]), pos = N - i + 1; if(check(pos) && check(t)) ans++; K = K % fac[i - 1]; } cout << ans; return 0; } /* */