1. 程式人生 > >語音識別與分類(三分類)

語音識別與分類(三分類)

目的:識別三個單詞(bed,cat,happy)

import librosa
import os
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
import numpy as np
from tqdm import tqdm

二、定義所需函式

def get_labels(path=DATA_PATH):
    labels = os.listdir(path)
    label_indices = np.arange(0, len(labels))
    return
labels, label_indices, to_categorical(label_indices) def wav2mfcc(file_path): wave, sr = librosa.load(file_path, mono=True, sr=None) mfcc = librosa.feature.mfcc(wave, sr=16000) return mfcc def save_data_to_array(path=DATA_PATH): labels, _, _ = get_labels(path) for label in labels: mfcc_vectors = [] wavfiles = [path + label + '/'
+ wavfile for wavfile in os.listdir(path + '/' + label)] for wavfile in tqdm(wavfiles, "Saving vectors of label - '{}'".format(label)): mfcc = wav2mfcc(wavfile) mfcc_vectors.append(mfcc) np.save(label + '.npy', mfcc_vectors) def get_train_test(split_ratio=0.6
, random_state=42)
:
labels, indices, _ = get_labels(DATA_PATH) X = np.load(labels[0] + '.npy') y = np.zeros(X.shape[0]) for i, label in enumerate(labels[1:]): x = np.load(label + '.npy') X = np.vstack((X, x)) y = np.append(y, np.full(x.shape[0], fill_value= (i + 1))) assert X.shape[0] == len(y) return train_test_split(X, y, test_size= (1 - split_ratio), random_state=random_state, shuffle=True) def prepare_dataset(path=DATA_PATH): labels, _, _ = get_labels(path) data = {} for label in labels: data[label] = {} data[label]['path'] = [path + label + '/' + wavfile for wavfile in os.listdir(path + '/' + label)] vectors = [] for wavfile in data[label]['path']: wave, sr = librosa.load(wavfile, mono=True, sr=None) mfcc = librosa.feature.mfcc(wave, sr=16000) vectors.append(mfcc) data[label]['mfcc'] = vectors return data def load_dataset(path=DATA_PATH): data = prepare_dataset(path) dataset = [] for key in data: for mfcc in data[key]['mfcc']: dataset.append((key, mfcc)) return dataset[:100]

三、定義模型

def get_model():
    model = Sequential()
    model.add(Conv2D(32, kernel_size=(2, 2), activation='relu', input_shape=(feature_dim_1, feature_dim_2, channel)))
    model.add(Conv2D(48, kernel_size=(2, 2), activation='relu'))
    model.add(Conv2D(120, kernel_size=(2, 2), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.4))
    model.add(Dense(num_classes, activation='softmax'))
    model.compile(loss=keras.losses.categorical_crossentropy,
                  optimizer=keras.optimizers.Adadelta(),
                  metrics=['accuracy'])
    return model


四、填入資料

%load_ext autoreload
#自動載入模組
%autoreload 2
#%aimport每次執行鍵入的Python程式碼之前,每次重新載入所有模組(排除的除外)。

from preprocess import *
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.utils import to_categorical


feature_dim_2 = 32


save_data_to_array(max_len=feature_dim_2)


X_train, X_test, y_train, y_test = get_train_test()


feature_dim_1 = 20
channel = 1
epochs = 50
batch_size = 100
verbose = 1
num_classes = 3


X_train = X_train.reshape(X_train.shape[0], feature_dim_1, feature_dim_2, channel)
X_test = X_test.reshape(X_test.shape[0], feature_dim_1, feature_dim_2, channel)

y_train_hot = to_categorical(y_train)
y_test_hot = to_categorical(y_test)

五、評價模型

model = get_model()
model.fit(X_train, y_train_hot, batch_size=batch_size, epochs=epochs, verbose=verbose, validation_data=(X_test, y_test_hot))

模型準確率在0.95
大家可以親自嘗試一下。