Miller-Rabin演算法
寫在前面:
記錄了個人的學習過程,同時方便複習
整理自網路
非原創部分會標明出處
by blackgryph0n
目錄 |
Miller-Rabin演算法可以在O(k log2(n))的時間內檢測一個超級大的正整數n是否是素數,k為自己設定的檢測的次數
對於任意素數p,以及對於模p的剩餘類環{1,2,...,p-1}中的任意數x,都滿足xp
p是素數為xp ≡ x (mod p)的充分不必要條件
但是仍然可以用這個技巧來排除大量的合數
為了排除大量合數,我們需要從模p的剩餘類環中選取更多的數進行測試,以增強結果的可信度,即二次探測定理,只要存在一個數x不滿足xp ≡ x (mod p),那麼p就絕不可能是素數
然而某些合數模p的剩餘類環中,對於任意1,..,p-1中的x都滿足xp ≡ x (mod p),這類合數稱為卡邁克爾(Carmichael)數
Carmichael數是比較少的,在1~100000000範圍內的整數中,只有255個
In number theory, a Carmichael number is a composite number n which satisfies the modular arithmetic congruence relation bn-1 ≡ 1 (mod n) for all integers b which are relatively prime to n
They are named for Robert Carmichael. The Carmichael numbers are the subset K Equivalently, a Carmichael number is a composite number bn ≡ b (mod n) for which for all integers b ——Wikipedia |
常見卡邁克爾數: 561 1105 1729 2465 2821 6601 8911 10585 15841 …… ——bia度百科 |
裸的Miller-Rabin演算法不能夠篩除這樣的合數
上程式碼:
C++:
1 #include<bits/stdc++.h> 2 3 using namespace std; 4 typedef long long ll; 5 6 int const times=10; 7 8 ll ponyFE(ll a,ll b,ll c) 9 { 10 ll ans=1; 11 a%=c; 12 while(b!=0) 13 { 14 if(b&1) ans=(ans*a)%c; 15 b>>=1; 16 a=(a*a)%c; 17 } 18 return ans; 19 } 20 21 bool millerRabin(ll x) 22 { 23 if(x==2) return 1; 24 if(!(x&1)||x==1) return 0; 25 26 bool pass; 27 ll d=x-1,m; 28 while(!(d&1)) d>>=1;ll tmp=d; 29 for(int i=1;i<=times;++i) 30 { 31 d=tmp;pass=0; 32 33 m=ponyFE(rand()%(x-2)+2,d,x); 34 if(m==1) continue; 35 else for(;d<x&&d>=0;m=(m*m)%x,d<<=1) 36 if(m==x-1){pass=1;break;} 37 38 if(!pass) return 0; 39 } 40 41 return 1; 42 } 43 44 int main(int argc,char *argv[],char *enc[]) 45 { 46 int tot=0; 47 for(ll i=1;i<=100;++i) 48 if(millerRabin(i)) printf("%d\n",i),++tot; 49 printf("tot:%d\n",tot); 50 51 return 0; 52 }
Java:
1 import java.io.*; 2 import java.util.*; 3 4 class Pony 5 { 6 static int times=10; 7 8 static long ponyFE(long a,long b,long c) 9 { 10 long ans=1; 11 a%=c; 12 while(b!=0) 13 { 14 if((b&1)==1) ans=(ans*a)%c; 15 b>>=1; 16 a=(a*a)%c; 17 } 18 return ans; 19 } 20 21 static boolean millerRabin(long x) 22 { 23 if(x==2) return true; 24 if((x&1)==0||x==1) return false; 25 26 boolean pass; 27 long d=x-1,m; 28 while((d&1)==0) d>>=1;long tmp=d; 29 for(int i=1;i<=times;++i) 30 { 31 d=tmp;pass=false; 32 33 m=ponyFE((int)(Math.random())%(x-2)+2,d,x); 34 if(m==1) continue; 35 else for(;d<x&&d>=0;m=(m*m)%x,d<<=1) 36 if(m==x-1){pass=true;break;} 37 38 if(!pass) return false; 39 } 40 41 return true; 42 } 43 44 public static void main(String[] args) throws Exception 45 { 46 Scanner cin=new Scanner(System.in); 47 48 int tot=0; 49 for(long i=1;i<=100;++i) 50 if(millerRabin(i)) 51 { 52 System.out.println(i); 53 ++tot; 54 } 55 System.out.println("tot:"+tot); 56 } 57 }