基於時間序列模型的預測
阿新 • • 發佈:2019-01-07
Statespace Model Results ========================================================================================== Dep. Variable: riders No. Observations: 114 Model: SARIMAX(0, 1, 0)x(0, 1, 1, 12) Log Likelihood -504.683 Date: Tue, 20 Jun 2017 AIC 1013.365 Time: 05:37:32 BIC 1018.838 Sample: 01-31-1960 HQIC 1015.586 - 06-30-1969 Covariance Type: opg ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ ma.S.L12 -0.6937 0.118 -5.867 0.000 -0.925 -0.462 sigma2 1185.5644 183.539 6.459 0.000 825.834 1545.295 =================================================================================== Ljung-Box (Q): 43.16 Jarque-Bera (JB): 2.01 Prob(Q): 0.34 Prob(JB): 0.37 Heteroskedasticity (H): 1.49 Skew: 0.28 Prob(H) (two-sided): 0.25 Kurtosis: 3.39 =================================================================================== Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step). Residuals Summary: 0 count 114.000000 mean 0.920410 std 72.659634 min -214.018001 25% -22.898384 50% -5.576031 75% 18.514757 max 648.000000