1. 程式人生 > >基於時間序列模型的預測

基於時間序列模型的預測

                                 Statespace Model Results                                 
==========================================================================================
Dep. Variable:                             riders   No. Observations:                  114
Model:             SARIMAX(0, 1, 0)x(0, 1, 1, 12)   Log Likelihood                -504.683
Date:                            Tue, 20 Jun 2017   AIC                           1013.365
Time:                                    05:37:32   BIC                           1018.838
Sample:                                01-31-1960   HQIC                          1015.586
                                     - 06-30-1969                                         
Covariance Type:                              opg                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ma.S.L12      -0.6937      0.118     -5.867      0.000      -0.925      -0.462
sigma2      1185.5644    183.539      6.459      0.000     825.834    1545.295
===================================================================================
Ljung-Box (Q):                       43.16   Jarque-Bera (JB):                 2.01
Prob(Q):                              0.34   Prob(JB):                         0.37
Heteroskedasticity (H):               1.49   Skew:                             0.28
Prob(H) (two-sided):                  0.25   Kurtosis:                         3.39
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).


Residuals Summary:
                 0
count  114.000000
mean     0.920410
std     72.659634
min   -214.018001
25%    -22.898384
50%     -5.576031
75%     18.514757
max    648.000000