1. 程式人生 > >tensorflow將訓練好的模型freeze,即將權重固化到圖裡面,並使用該模型進行預測

tensorflow將訓練好的模型freeze,即將權重固化到圖裡面,並使用該模型進行預測

ML主要分為訓練和預測兩個階段,此教程就是將訓練好的模型freeze並儲存下來.freeze的含義就是將該模型的圖結構和該模型的權重固化到一起了.也即載入freeze的模型之後,立刻能夠使用了。

下面使用一個簡單的demo來詳細解釋該過程,

一、首先執行指令碼tiny_model.py

#-*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np


with tf.variable_scope('Placeholder'):
    inputs_placeholder = tf.placeholder(tf.float32, name='inputs_placeholder', shape=[None, 10])
    labels_placeholder = tf.placeholder(tf.float32, name='labels_placeholder', shape=[None, 1])

with tf.variable_scope('NN'):
    W1 = tf.get_variable('W1', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1))
    b1 = tf.get_variable('b1', shape=[1], initializer=tf.constant_initializer(0.1))
    W2 = tf.get_variable('W2', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1))
    b2 = tf.get_variable('b2', shape=[1], initializer=tf.constant_initializer(0.1))

    a = tf.nn.relu(tf.matmul(inputs_placeholder, W1) + b1)
    a2 = tf.nn.relu(tf.matmul(inputs_placeholder, W2) + b2)

    y = tf.div(tf.add(a, a2), 2)

with tf.variable_scope('Loss'):
    loss = tf.reduce_sum(tf.square(y - labels_placeholder) / 2)

with tf.variable_scope('Accuracy'):
    predictions = tf.greater(y, 0.5, name="predictions")
    correct_predictions = tf.equal(predictions, tf.cast(labels_placeholder, tf.bool), name="correct_predictions")
    accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))


adam = tf.train.AdamOptimizer(learning_rate=1e-3)
train_op = adam.minimize(loss)

# generate_data
inputs = np.random.choice(10, size=[10000, 10])
labels = (np.sum(inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32)
print('inputs.shape:', inputs.shape)
print('labels.shape:', labels.shape)


test_inputs = np.random.choice(10, size=[100, 10])
test_labels = (np.sum(test_inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32)
print('test_inputs.shape:', test_inputs.shape)
print('test_labels.shape:', test_labels.shape)

batch_size = 32
epochs = 10

batches = []
print("%d items in batch of %d gives us %d full batches and %d batches of %d items" % (
    len(inputs),
    batch_size,
    len(inputs) // batch_size,
    batch_size - len(inputs) // batch_size,
    len(inputs) - (len(inputs) // batch_size) * 32)
)
for i in range(len(inputs) // batch_size):
    batch = [ inputs[batch_size*i:batch_size*i+batch_size], labels[batch_size*i:batch_size*i+batch_size] ]
    batches.append(list(batch))
if (i + 1) * batch_size < len(inputs):
    batch = [ inputs[batch_size*(i + 1):],labels[batch_size*(i + 1):] ]
    batches.append(list(batch))
print("Number of batches: %d" % len(batches))
print("Size of full batch: %d" % len(batches[0]))
print("Size if final batch: %d" % len(batches[-1]))

global_count = 0

with tf.Session() as sess:
#sv = tf.train.Supervisor()
#with sv.managed_session() as sess:
    sess.run(tf.initialize_all_variables())
    for i in range(epochs):
        for batch in batches:
            # print(batch[0].shape, batch[1].shape)
            train_loss , _= sess.run([loss, train_op], feed_dict={
                inputs_placeholder: batch[0],
                labels_placeholder: batch[1]
            })
            # print('train_loss: %d' % train_loss)

            if global_count % 100 == 0:
                acc = sess.run(accuracy, feed_dict={
                    inputs_placeholder: test_inputs,
                    labels_placeholder: test_labels
                })
                print('accuracy: %f' % acc)
            global_count += 1

    acc = sess.run(accuracy, feed_dict={
        inputs_placeholder: test_inputs,
        labels_placeholder: test_labels
    })
    print("final accuracy: %f" % acc)
    #在session當中就要將模型進行儲存
    saver = tf.train.Saver()
    last_chkp = saver.save(sess, 'results/graph.chkp')
    #sv.saver.save(sess, 'results/graph.chkp')

for op in tf.get_default_graph().get_operations():
    print(op.name)
說明:saver.save必須在session裡面,因為在session裡面,整個圖才是啟用的,才能夠將引數存進來,使用save之後能夠得到如下的檔案:


說明: .data:存放的是權重引數 .meta:存放的是圖和metadata,metadata是其他配置的資料 如果想將我們的模型固化,讓別人能夠使用,我們僅僅需要的是圖和引數,metadata是不需要的

二、綜合上述幾個檔案,生成可以使用的模型的步驟如下

1、恢復我們儲存的圖 2、開啟一個Session,然後載入該圖要求的權重 3、刪除對預測無關的metadata 4、將處理好的模型序列化之後儲存 執行freeze.py
#-*- coding:utf-8 -*-
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util

dir = os.path.dirname(os.path.realpath(__file__))

def freeze_graph(model_folder):
    # We retrieve our checkpoint fullpath
    checkpoint = tf.train.get_checkpoint_state(model_folder)
    input_checkpoint = checkpoint.model_checkpoint_path
    
    # We precise the file fullname of our freezed graph
    absolute_model_folder = "/".join(input_checkpoint.split('/')[:-1])
    output_graph = absolute_model_folder + "/frozen_model.pb"

    # Before exporting our graph, we need to precise what is our output node
    # this variables is plural, because you can have multiple output nodes
    #freeze之前必須明確哪個是輸出結點,也就是我們要得到推論結果的結點
    #輸出結點可以看我們模型的定義
    #只有定義了輸出結點,freeze才會把得到輸出結點所必要的結點都儲存下來,或者哪些結點可以丟棄
    #所以,output_node_names必須根據不同的網路進行修改
    output_node_names = "Accuracy/predictions"

    # We clear the devices, to allow TensorFlow to control on the loading where it wants operations to be calculated
    clear_devices = True
    
    # We import the meta graph and retrive a Saver
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)

    # We retrieve the protobuf graph definition
    graph = tf.get_default_graph()
    input_graph_def = graph.as_graph_def()

    #We start a session and restore the graph weights
    #這邊已經將訓練好的引數載入進來,也即最後儲存的模型是有圖,並且圖裡面已經有引數了,所以才叫做是frozen
    #相當於將引數已經固化在了圖當中 
    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)

        # We use a built-in TF helper to export variables to constant
        output_graph_def = graph_util.convert_variables_to_constants(
            sess, 
            input_graph_def, 
            output_node_names.split(",") # We split on comma for convenience
        ) 

        # Finally we serialize and dump the output graph to the filesystem
        with tf.gfile.GFile(output_graph, "wb") as f:
            f.write(output_graph_def.SerializeToString())
        print("%d ops in the final graph." % len(output_graph_def.node))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_folder", type=str, help="Model folder to export")
    args = parser.parse_args()

    freeze_graph(args.model_folder)

說明:對於freeze操作,我們需要定義輸出結點的名字.因為網路其實是比較複雜的,定義了輸出結點的名字,那麼freeze的時候就只把輸出該結點所需要的子圖都固化下來,其他無關的就捨棄掉.因為我們freeze模型的目的是接下來做預測.所以,一般情況下,output_node_names就是我們預測的目標.

三、載入freeze後的模型,注意該模型已經是包含圖和相應的引數了.所以,我們不需要再載入引數進來.也即該模型載入進來已經是可以使用了.

#-*- coding:utf-8 -*-
import argparse 
import tensorflow as tf

def load_graph(frozen_graph_filename):
    # We parse the graph_def file
    with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())

    # We load the graph_def in the default graph
    with tf.Graph().as_default() as graph:
        tf.import_graph_def(
            graph_def, 
            input_map=None, 
            return_elements=None, 
            name="prefix", 
            op_dict=None, 
            producer_op_list=None
        )
    return graph

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--frozen_model_filename", default="results/frozen_model.pb", type=str, help="Frozen model file to import")
    args = parser.parse_args()
    #載入已經將引數固化後的圖
    graph = load_graph(args.frozen_model_filename)

    # We can list operations
    #op.values() gives you a list of tensors it produces
    #op.name gives you the name
    #輸入,輸出結點也是operation,所以,我們可以得到operation的名字
    for op in graph.get_operations():
        print(op.name,op.values())
        # prefix/Placeholder/inputs_placeholder
        # ...
        # prefix/Accuracy/predictions
    #操作有:prefix/Placeholder/inputs_placeholder
    #操作有:prefix/Accuracy/predictions
    #為了預測,我們需要找到我們需要feed的tensor,那麼就需要該tensor的名字
    #注意prefix/Placeholder/inputs_placeholder僅僅是操作的名字,prefix/Placeholder/inputs_placeholder:0才是tensor的名字
    x = graph.get_tensor_by_name('prefix/Placeholder/inputs_placeholder:0')
    y = graph.get_tensor_by_name('prefix/Accuracy/predictions:0')
        
    with tf.Session(graph=graph) as sess:
        y_out = sess.run(y, feed_dict={
            x: [[3, 5, 7, 4, 5, 1, 1, 1, 1, 1]] # < 45
        })
        print(y_out) # [[ 0.]] Yay!
    print ("finish")
說明:

1、在預測的過程中,當把freeze後的模型載入進來後,我們只需要定義好輸入的tensor和目標tensor即可

2、在這裡要注意一下tensor_name和ops_name,

注意prefix/Placeholder/inputs_placeholder僅僅是操作的名字,prefix/Placeholder/inputs_placeholder:0才是tensor的名字

x = graph.get_tensor_by_name('prefix/Placeholder/inputs_placeholder:0')一定要使用tensor的名字

3、要獲取圖中ops的名字和對應的tensor的名字,可用如下的程式碼:

    # We can list operations
    #op.values() gives you a list of tensors it produces
    #op.name gives you the name
    #輸入,輸出結點也是operation,所以,我們可以得到operation的名字
    for op in graph.get_operations():
        print(op.name,op.values())

=============================================================================================================================

上面是使用了Saver()來儲存模型,也可以使用sv = tf.train.Supervisor()來儲存模型

#-*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np


with tf.variable_scope('Placeholder'):
    inputs_placeholder = tf.placeholder(tf.float32, name='inputs_placeholder', shape=[None, 10])
    labels_placeholder = tf.placeholder(tf.float32, name='labels_placeholder', shape=[None, 1])

with tf.variable_scope('NN'):
    W1 = tf.get_variable('W1', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1))
    b1 = tf.get_variable('b1', shape=[1], initializer=tf.constant_initializer(0.1))
    W2 = tf.get_variable('W2', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1))
    b2 = tf.get_variable('b2', shape=[1], initializer=tf.constant_initializer(0.1))

    a = tf.nn.relu(tf.matmul(inputs_placeholder, W1) + b1)
    a2 = tf.nn.relu(tf.matmul(inputs_placeholder, W2) + b2)

    y = tf.div(tf.add(a, a2), 2)

with tf.variable_scope('Loss'):
    loss = tf.reduce_sum(tf.square(y - labels_placeholder) / 2)

with tf.variable_scope('Accuracy'):
    predictions = tf.greater(y, 0.5, name="predictions")
    correct_predictions = tf.equal(predictions, tf.cast(labels_placeholder, tf.bool), name="correct_predictions")
    accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))


adam = tf.train.AdamOptimizer(learning_rate=1e-3)
train_op = adam.minimize(loss)

# generate_data
inputs = np.random.choice(10, size=[10000, 10])
labels = (np.sum(inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32)
print('inputs.shape:', inputs.shape)
print('labels.shape:', labels.shape)


test_inputs = np.random.choice(10, size=[100, 10])
test_labels = (np.sum(test_inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32)
print('test_inputs.shape:', test_inputs.shape)
print('test_labels.shape:', test_labels.shape)

batch_size = 32
epochs = 10

batches = []
print("%d items in batch of %d gives us %d full batches and %d batches of %d items" % (
    len(inputs),
    batch_size,
    len(inputs) // batch_size,
    batch_size - len(inputs) // batch_size,
    len(inputs) - (len(inputs) // batch_size) * 32)
)
for i in range(len(inputs) // batch_size):
    batch = [ inputs[batch_size*i:batch_size*i+batch_size], labels[batch_size*i:batch_size*i+batch_size] ]
    batches.append(list(batch))
if (i + 1) * batch_size < len(inputs):
    batch = [ inputs[batch_size*(i + 1):],labels[batch_size*(i + 1):] ]
    batches.append(list(batch))
print("Number of batches: %d" % len(batches))
print("Size of full batch: %d" % len(batches[0]))
print("Size if final batch: %d" % len(batches[-1]))

global_count = 0

#with tf.Session() as sess:
sv = tf.train.Supervisor()
with sv.managed_session() as sess:
    #sess.run(tf.initialize_all_variables())
    for i in range(epochs):
        for batch in batches:
            # print(batch[0].shape, batch[1].shape)
            train_loss , _= sess.run([loss, train_op], feed_dict={
                inputs_placeholder: batch[0],
                labels_placeholder: batch[1]
            })
            # print('train_loss: %d' % train_loss)

            if global_count % 100 == 0:
                acc = sess.run(accuracy, feed_dict={
                    inputs_placeholder: test_inputs,
                    labels_placeholder: test_labels
                })
                print('accuracy: %f' % acc)
            global_count += 1

    acc = sess.run(accuracy, feed_dict={
        inputs_placeholder: test_inputs,
        labels_placeholder: test_labels
    })
    print("final accuracy: %f" % acc)
    #在session當中就要將模型進行儲存
    #saver = tf.train.Saver()
    #last_chkp = saver.save(sess, 'results/graph.chkp')
    sv.saver.save(sess, 'results/graph.chkp')

for op in tf.get_default_graph().get_operations():
    print(op.name)

注意:使用了sv = tf.train.Supervisor(),就不需要再初始化了,將sess.run(tf.initialize_all_variables())註釋掉,否則會報錯.