1. 程式人生 > >tensorflow實現卷積神經網(CNN),還加了個dropout

tensorflow實現卷積神經網(CNN),還加了個dropout

來自<Tensorflow實戰>一書

# 兩個卷積 一個全連線層
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 有許多權重偏置要建立,先定義倆留著用
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev
= 0.1) # 標準差0.1 return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape=shape) # 偏置增加小正值防止死亡節點 return tf.Variable(initial) # 定義卷積層和池化層 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') # 卷積的輸出輸入保持同樣的尺寸 # strides[圖片,長,寬,channel] def
max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # 定義輸入空間 x = tf.placeholder(tf.float32,[None, 784]) y_ = tf.placeholder(tf.float32,[None,10]) x_image = tf.reshape(x, [-1,28,28,1]) # 第一個卷積層+池化 W_conv1 = weight_variable([5,5,1,32]) b_conv1 = bias_variable([32
]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # 第二個卷積層+池化 W_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 連一個全連線層 W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) # 把第二個卷積層的輸出reshape1D的 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # Dropoutkeep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # SoftmaxW_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # Adam優化器+cross entropy+小學習速率 cross_entropy =tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 評測準確率 correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 訓練 tf.global_variables_initializer().run() for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 0.5}) print("step %d, training accuracy %g"%(i,train_accuracy)) train_step.run(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0}) # 全部訓練完成 測試 print("test accuracy g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))