1. 程式人生 > >使用maven搭建hadoop環境

使用maven搭建hadoop環境

關於Maven的使用就不再囉嗦了,網上很多,並且這麼多年變化也不大,這裡僅介紹怎麼搭建Hadoop的開發環境。
1. 首先建立工程

[plain] view plain copy print?
mvn archetype:generate -DgroupId=my.hadoopstudy -DartifactId=hadoopstudy -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false  
  1. 然後在pom.xml檔案裡新增hadoop的依賴包hadoop-common, hadoop-client, hadoop-hdfs
    ,新增後的pom.xml檔案如下
    [html] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0"  
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">  
    <modelVersion>4.0.0</modelVersion
>
<groupId>my.hadoopstudy</groupId> <artifactId>hadoopstudy</artifactId> <packaging>jar</packaging> <version>1.0-SNAPSHOT</version> <name>hadoopstudy</name> <url>http://maven.apache.org</url> <dependencies
>
<dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.6.4</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>2.6.4</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.4</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> </dependencies> </project>
  1. 測試
    3.1 首先我們可以測試一下hdfs的開發,這裡假定使用上一篇Hadoop文章中的hadoop叢集,類程式碼如下
    [java] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片
package my.hadoopstudy.dfs;  

import org.apache.hadoop.conf.Configuration;  
import org.apache.hadoop.fs.FSDataOutputStream;  
import org.apache.hadoop.fs.FileStatus;  
import org.apache.hadoop.fs.FileSystem;  
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.io.IOUtils;  

import java.io.InputStream;  
import java.net.URI;  

public class Test {  
    public static void main(String[] args) throws Exception {  
        String uri = "hdfs://9.111.254.189:9000/";  
        Configuration config = new Configuration();  
        FileSystem fs = FileSystem.get(URI.create(uri), config);  

        // 列出hdfs上/user/fkong/目錄下的所有檔案和目錄  
        FileStatus[] statuses = fs.listStatus(new Path("/user/fkong"));  
        for (FileStatus status : statuses) {  
            System.out.println(status);  
        }  

        // 在hdfs的/user/fkong目錄下建立一個檔案,並寫入一行文字  
        FSDataOutputStream os = fs.create(new Path("/user/fkong/test.log"));  
        os.write("Hello World!".getBytes());  
        os.flush();  
        os.close();  

        // 顯示在hdfs的/user/fkong下指定檔案的內容  
        InputStream is = fs.open(new Path("/user/fkong/test.log"));  
        IOUtils.copyBytes(is, System.out, 1024, true);  
    }  
}  

3.2 測試MapReduce作業
測試程式碼比較簡單,如下:
[java] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片

package my.hadoopstudy.mapreduce;  

import org.apache.hadoop.conf.Configuration;  
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.io.IntWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.mapreduce.Job;  
import org.apache.hadoop.mapreduce.Mapper;  
import org.apache.hadoop.mapreduce.Reducer;  
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
import org.apache.hadoop.util.GenericOptionsParser;  

import java.io.IOException;  

public class EventCount {  

    public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{  
        private final static IntWritable one = new IntWritable(1);  
        private Text event = new Text();  

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {  
            int idx = value.toString().indexOf(" ");  
            if (idx > 0) {  
                String e = value.toString().substring(0, idx);  
                event.set(e);  
                context.write(event, one);  
            }  
        }  
    }  

    public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable> {  
        private IntWritable result = new IntWritable();  

        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {  
            int sum = 0;  
            for (IntWritable val : values) {  
                sum += val.get();  
            }  
            result.set(sum);  
            context.write(key, result);  
        }  
    }  

    public static void main(String[] args) throws Exception {  
        Configuration conf = new Configuration();  
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();  
        if (otherArgs.length < 2) {  
            System.err.println("Usage: EventCount <in> <out>");  
            System.exit(2);  
        }  
        Job job = Job.getInstance(conf, "event count");  
        job.setJarByClass(EventCount.class);  
        job.setMapperClass(MyMapper.class);  
        job.setCombinerClass(MyReducer.class);  
        job.setReducerClass(MyReducer.class);  
        job.setOutputKeyClass(Text.class);  
        job.setOutputValueClass(IntWritable.class);  
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));  
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));  
        System.exit(job.waitForCompletion(true) ? 0 : 1);  
    }  
}  

執行“mvn package”命令產生jar包hadoopstudy-1.0-SNAPSHOT.jar,並將jar檔案複製到hadoop安裝目錄下
這裡假定我們需要分析幾個日誌檔案中的Event資訊來統計各種Event個數,所以建立一下目錄和檔案
[plain] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片

/tmp/input/event.log.1  
/tmp/input/event.log.2  
/tmp/input/event.log.

3

因為這裡只是要做一個列子,所以每個檔案內容可以都一樣,假如內容如下
[plain] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片

JOB_NEW ...  
JOB_NEW ...  
JOB_FINISH ...  
JOB_NEW ...  
JOB_FINISH ...  

然後把這些檔案複製到HDFS上
[plain] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片
$ bin/hdfs dfs -put /tmp/input /user/fkong/input

執行mapreduce作業
[plain] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片

$ bin/hadoop jar hadoopstudy-1.0-SNAPSHOT.jar my.hadoopstudy.mapreduce.EventCount /user/fkong/input /user/fkong/output

檢視執行結果
[plain] view plain copy print?在CODE上檢視程式碼片派生到我的程式碼片

$ bin/hdfs dfs -cat /user/fkong/output/part-r-00000