1. 程式人生 > >資料結構,圖的鄰接矩陣建立,鄰接矩陣與鄰接表的交換,兩種表的輸出,過程用C++實現

資料結構,圖的鄰接矩陣建立,鄰接矩陣與鄰接表的交換,兩種表的輸出,過程用C++實現

/*
編寫一個程式algo8-1.cpp,實現不帶權圖和帶權圖的鄰接矩陣與鄰接表的互相
轉換演算法、輸出鄰接矩陣與鄰接表的演算法,並在此基礎上設計一個程式exp8-1.cpp
實現如下功能:
1)建立如圖有向圖G的鄰接矩陣,並輸出;
2)由有向圖G的鄰接矩陣產生鄰接表,並輸出;
3)再由2)鄰接表產生對應的鄰接矩陣,並輸出。
*/


#include<iostream>
#define MAX 6
using namespace std;

class VertexType	//頂點型別
{
public:
	int no;		//頂點編號
	char info;	
};

class MGraph
{
public:
	int edges[MAX][MAX];	//鄰接矩陣的變陣列,使用int型別記錄,主要記錄為0、1,帶權的則為其權值
	int n,e;				//	頂點數,邊數
	VertexType vexs[MAX];	//存放頂點資訊
	MGraph():n(0),e(0){
		for	(int x = 0 ; x < MAX ; x++)
			for(int y = 0 ; y < MAX ; y ++)
				edges[x][y] = 0;
		for (int i =0; i < MAX; i++)
			this ->vexs[i].info = -1;
	}
};//	完整的圖鄰接矩陣型別

class ArcNode
{
public:
	ArcNode():adjvex(0),nextarc(NULL){}
	int adjvex;		//該邊的終點編號
	ArcNode * nextarc;
	char info;		//邊的資訊
};

class VNode		//起點資訊
{
public :
	VNode():data(0),firstarc(NULL){}
	void Reset()
	{
		adjvex = -1;
		data = 0;
		firstarc = NULL;
	}
	int adjvex;
	char data;		//起點資訊
	ArcNode * firstarc;
};

typedef VNode AdjList[MAX]	;	//eg:"typedef char Line[81];      //Line是char[81]    (而不是說char是line[81])"

class ALGraph
{
public:
	ALGraph():n (0),e (0){				//鄰接表初始化
		for(int i = 0;i < MAX ; i ++)
			adjlist[i].Reset();
	}
	AdjList adjlist;
	int n,e;
};					//完整的圖鄰接表的型別

void CreatMGraph(MGraph * G)		//圖的建構函式,不帶權帶向
{
	cout << "輸入圖的頂點個數: ";
	cin >> G ->n ;
	cout << "輸入圖的邊數:";
	cin >> G ->e ;

	int x,y;
	for(x = 0 ; x < G ->n ; x++)
		for ( y = 0 ; y < G ->n ; y++)
			G->edges[x][y] = 0;			//預設設定為 0

	for (int i = 0 ; i < G ->e ; i++)
	{
		int weight; // 權值
		cout << "請輸入第" << (i+1) << "條邊的前後節點。"  << endl;
		cout << "出發點:" ;
		cin >> x;
		cout << "接收點:" ;
		cin >> y;
	/*	cout << "輸入權值:";
		cin >> weight;*/
		G ->edges[x][y] = 1;
	}
}

void OutputMGraph(MGraph * G)
{
	cout << "----------現在輸出鄰接矩陣------------" << endl; 
	for(int i = 0 ; i < G ->n ; i ++)
	{
		for (int j = 0 ; j < G ->n ; j ++)
			cout << G ->edges[i][j] << "    " ;
		cout << endl;
	}
	cout << "--------------------------------------" <<endl;	
}

void OutputALGraph(ALGraph * G)		//輸出鄰接表
{
	cout << "--------------現在輸出鄰接表---------------" << endl;
	for(int i = 0; i < G ->n ; i ++)
	{
		if(G ->adjlist[i].adjvex  == -1)	break;		//不存在頂點時退出迴圈
		cout << G ->adjlist[i].adjvex ;
		while(G ->adjlist [i].firstarc != NULL)
		{
			ArcNode * temp = G ->adjlist[i].firstarc;
			while(temp != NULL)
			{
				cout << "---->" << temp->adjvex;
				if(temp ->nextarc == NULL)	break;
				temp = temp ->nextarc;
			}if(temp ->nextarc == NULL) break;	//再跳出
		}
		cout << endl;
	}
	cout << "---------------鄰接表輸出結束---------------" << endl;
}

void MatToList(MGraph * g,ALGraph *&G)
{
	ArcNode * p;
	G = new ALGraph();
	for(int i = 0; i < g ->n ;i ++)		//初始化鄰接表,使其寫上頂點編號
		G ->adjlist[i].adjvex = i;		//	0 1 2 3 4 5	,n的值應該為6
	for(int i = 0;i < g ->n;i++)
		for(int j = 0; j < g ->n;j++)
			if(g ->edges[i][j] != 0)			//不帶權的有向或無向鄰接矩陣轉鄰接表
			{	p = new ArcNode();
				p ->adjvex = j;
				p ->nextarc = G ->adjlist[i].firstarc;
				G ->adjlist[i].firstarc = p;
			}
		
	G ->n = g ->n;
	G ->e = g ->e;
}

void ListToMat(ALGraph * g,MGraph * &G)//鄰接錶轉鄰接矩陣
{
	int i;
	ArcNode * p;
	for( i =0; i< g ->n;i++)
	{
		p = g ->adjlist[i].firstarc;
		while(p != NULL)
		{
			G ->edges[i][p ->adjvex] = 1;
			p = p ->nextarc;
		}
	}
	G ->e = g ->e;
	G ->n = g ->n;
}


int main()
{
	MGraph * G = new MGraph();
	CreatMGraph(G);
	OutputMGraph(G);

	ALGraph * J;
	MatToList(G,J);
	OutputALGraph(J);

	MGraph * g = new MGraph();
	ListToMat(J,g);
	OutputMGraph(g);


	return 0;

}