1. 程式人生 > >Tensorflow實現一個CNN分類的例子

Tensorflow實現一個CNN分類的例子

使用mnist中的資料,利用CNN將圖片進行分類。
構建了四層的神經網路,訓練需要一段時間~
convolutional layer1 + max pooling;
convolutional layer2 + max pooling;
fully connected layer1 + dropout;
fully connected layer2 to prediction.

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist=input_data.read_data_sets('MNIST_data'
,one_hot=True) def compulate_accuracy(v_xs,v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_pro: 1}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_pro: 1
}) return result def weight_variable(shape): initial=tf.truncated_normal(shape,stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial=tf.constant(0.1,shape=shape) return tf.Variable(initial) def con2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME'
) def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #define placeholder for inputs to network xs=tf.placeholder(tf.float32,[None,784])/255 ys=tf.placeholder(tf.float32,[None,10]) keep_pro=tf.placeholder(tf.float32) x_image=tf.reshape(xs,[-1,28,28,1]) #conv1 layer W_conv1=weight_variable([5,5,1,32]) b_conv1=bias_variable([32]) h_conv1=tf.nn.relu(con2d(x_image,W_conv1)+b_conv1) h_pool1=max_pool_2x2(h_conv1) #ouputsize=14x14x32 #conv2 layer W_conv2=weight_variable([5,5,32,64]) b_conv2=bias_variable([64]) h_conv2=tf.nn.relu(con2d(h_pool1,W_conv2)+b_conv2) h_pool2=max_pool_2x2(h_conv2) #outputsize=7x7x64 #fc1 layer W_fc1=weight_variable([7*7*64,1024]) b_fc1=bias_variable([1024]) ## [n_s_amples, 7, 7, 64] ->> [n_samples, 7*7*64] h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64]) h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) h_fc1_drop=tf.nn.dropout(h_fc1,keep_pro) #fc2 layer W_fc2=weight_variable([1024,10]) b_fc2=bias_variable([10]) prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #define error between prediction and real value cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) init=tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for i in range(500): batch_x,batch_y=mnist.train.next_batch(100) sess.run(train_step,feed_dict={xs:batch_x,ys:batch_y,keep_pro:0.5}) if i%50 == 0: print(compulate_accuracy(mnist.test.images,mnist.test.labels))