1. 程式人生 > >Tensorflow實現CIFAR-10分類問題-詳解二cifar10.py

Tensorflow實現CIFAR-10分類問題-詳解二cifar10.py

上一篇cifar1_train.py主要呼叫的都是cifar10.py這個檔案中的函式。我們來看cifar10.py,網路結構也主要包含在這個檔案當中,整個訓練圖包含765個操作(operations),cifar10.py圖主要有三個模組組成:

  • Model inputs: inputs()和distorted_inputs()用來增加讀圖片的操作,分別用力讀原始圖片和變形後的圖片。
  • Model prediction: inference()增加操作來perform inference,也就是來分類的。
  • Model training: loss()和train()增加操作計算loss,gradient,引數更新和視覺化。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse#argparse是python用於解析命令列引數和選項的標準模組
import os
import re
import sys
import tarfile

from six.moves import urllib
import tensorflow as tf

import cifar10_input

parser = argparse.ArgumentParser()#建立一個解析物件
# Basic model parameters. parser.add_argument('--batch_size', type=int, default=128, help='Number of images to process in a batch.')#新增要關注的命令列引數:1.命令列引數名, parser.add_argument('--data_dir', type=str, default='/home/liu/NewDisk/LearnTensor/cifar10_data',#下載位置 help='Path to the CIFAR-10 data directory.'
) parser.add_argument('--use_fp16', type=bool, default=False, help='Train the model using fp16.') FLAGS = parser.parse_args()#呼叫parse_args()方法進行解析 # Global constants describing the CIFAR-10 data set. # 外部引用cifar10_input檔案中的引數值 IMAGE_SIZE = cifar10_input.IMAGE_SIZE NUM_CLASSES = cifar10_input.NUM_CLASSES NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN#訓練時一個epoch中包含的樣本數 NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL#評估時一個epoch中包含的樣本數 # Constants describing the training process. MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average. NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.# '''衰減呈階梯函式,控制衰減週期''' LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.#學習率衰減因子 INITIAL_LEARNING_RATE = 0.1 # Initial learning rate.#初始學習率 # If a model is trained with multiple GPUs, prefix all Op names with tower_name # to differentiate the operations. Note that this prefix is removed from the # names of the summaries when visualizing a model. TOWER_NAME = 'tower' DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' def _activation_summary(x):#輸入一個tensor x,利用x操作的名字和x的資料資訊創造它的summary,用於tensorboard """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measures the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x .op.name) tf.summary.histogram(tensor_name + '/activations', x)#繪製分佈,引數1是圖示名字,引數2是要記錄的變數 tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))#zero_fraction()返回0在x中的分數比例? # 在cpu memory上建立一個名為name,大小為shape的變數。 def _variable_on_cpu(name, shape, initializer): """Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor """ with tf.device('/cpu:0'):#一個 context manager,用於為新的op指定要使用的硬體 dtype = tf.float16 if FLAGS.use_fp16 else tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)#通過所給名字建立或返回一個變數 return var def _variable_with_weight_decay(name, shape, stddev, wd): """Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints stddev: standard deviation of a truncated Gaussian wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. Returns: Variable Tensor """ dtype = tf.float16 if FLAGS.use_fp16 else tf.float32 var = _variable_on_cpu( name, shape, tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))#生成的值服從具有指定平均值和標準偏差的截斷的正態分佈 if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')#l2_loss(t):output = sum(t ** 2) / 2 tf.add_to_collection('losses', weight_decay) return var def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')#路徑整合到一起 images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size)#對輸入圖片變形,包含在cifar10_input.py中 if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size)#見cifar10_input.py檔案 if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels # 搭建模型 def inference(images): """Build the CIFAR-10 model. Args: images: Images returned from distorted_inputs() or inputs(). Returns: Logits. """ # We instantiate all variables using tf.get_variable() instead of # tf.Variable() in order to share variables across multiple GPU training runs. # If we only ran this model on a single GPU, we could simplify this function # by replacing all instances of tf.get_variable() with tf.Variable(). # # conv1 with tf.variable_scope('conv1') as scope: # 為變數指定名稱空間 kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=5e-2, wd=0.0) conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv1)#如上定義 # pool1 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # conv2 with tf.variable_scope('conv2') as scope: kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=0.0) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv2) # norm2 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # pool2 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # local3 with tf.variable_scope('local3') as scope: # Move everything into depth so we can perform a single matrix multiply. reshape = tf.reshape(pool2, [FLAGS.batch_size, -1]) dim = reshape.get_shape()[1].value weights = _variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) _activation_summary(local3) # local4 with tf.variable_scope('local4') as scope: weights = _variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name) _activation_summary(local4) # linear layer(WX + b), # We don't apply softmax here because # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits # and performs the softmax internally for efficiency. with tf.variable_scope('softmax_linear') as scope: weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], stddev=1/192.0, wd=0.0) biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear def loss(logits, labels): """Add L2Loss to all the trainable variables. Add summary for "Loss" and "Loss/avg". Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ # Calculate the average cross entropy loss across the batch. labels = tf.cast(labels, tf.int64) #型別轉換,使labels符合sparse_softmax_cross_entropy_with_logits輸入引數格式要求 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean)#閤中key='losses',value為cross_entropy_mean的子集中? # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss')# 返回字典集合中key='losses'的子集中元素之和 def _add_loss_summaries(total_loss): """Add summaries for losses in CIFAR-10 model. Generates moving average for all losses and associated summaries for visualizing the performance of the network. Args: total_loss: Total loss from loss(). Returns: loss_averages_op: op for generating moving averages of losses. """ # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')#建立物件 losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op def train(total_loss, global_step): """Train CIFAR-10 model. Create an optimizer and apply to all trainable variables. Add moving average for all trainable variables. Args: total_loss: Total loss from loss(). global_step: Integer Variable counting the number of training steps processed. Returns: train_op: op for training. """ # Variables that affect learning rate. num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)#每經過decay_step步訓練,學習率衰減一次? # Decay the learning rate exponentially based on the number of steps.返回衰減後的學習率,即lr lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,#0.1 global_step, decay_steps, LEARNING_RATE_DECAY_FACTOR,#0.1 staircase=True)#即每經過decay_steps輪訓練後,學習率乘以0.1 tf.summary.scalar('learning_rate', lr) # Generate moving averages of all losses and associated summaries. loss_averages_op = _add_loss_summaries(total_loss) # Compute gradients. #tf.control_dependencies是一個context manager,控制節點執行順序,依賴loss_averages_op才可以執行 with tf.control_dependencies([loss_averages_op]): opt = tf.train.GradientDescentOptimizer(lr)#梯度下降法更新引數變數,定義這樣一個物件opt grads = opt.compute_gradients(total_loss)#opt物件的一個函式,最小化損失來計算梯度 # Apply gradients.#返回一步梯度更新操作 apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables. for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var)#生成柱狀統計圖,用於在tensorboard上觀看資料分佈 # Add histograms for gradients. for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step)#variable_averages是一個物件,1-moving_average_decay相當於求moving average時的更新率 variables_averages_op = variable_averages.apply(tf.trainable_variables())#這個物件的apply()函式先創造一個變數的影子,然後對影子訓練變數求一個moving average,返回這個op.訓練引數的moving average要比最終訓練得到的引數效果要好很多. with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train')#在進行1.梯度更新(即對所有訓練引數進行跟新);2.求引數的moving averge後,方可進行tf.no_op()操作;tf.no_op僅僅創造一個操作的佔位符 return train_op def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = FLAGS.data_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin') if not os.path.exists(extracted_dir_path): tarfile.open(filepath, 'r:gz').extractall(dest_directory)