1001 害死人不償命的(3n+1)猜想(python 3)
阿新 • • 發佈:2019-01-10
卡拉茲(Callatz)猜想:
對任何一個正整數 n,如果它是偶數,那麼把它砍掉一半;如果它是奇數,那麼把 (3n+1) 砍掉一半。這樣一直反覆砍下去,最後一定在某一步得到 n=1。卡拉茲在 1950 年的世界數學家大會上公佈了這個猜想,傳說當時耶魯大學師生齊動員,拼命想證明這個貌似很傻很天真的命題,結果鬧得學生們無心學業,一心只證 (3n+1),以至於有人說這是一個陰謀,卡拉茲是在蓄意延緩美國數學界教學與科研的進展……
我們今天的題目不是證明卡拉茲猜想,而是對給定的任一不超過 1000 的正整數 n,簡單地數一下,需要多少步(砍幾下)才能得到 n=1?
輸入格式:
每個測試輸入包含 1 個測試用例,即給出正整數 n 的值。
輸出格式:
輸出從 n 計算到 1 需要的步數。
輸入樣例:
3
輸出樣例:
5
python 3
a = eval(input())
sum = 0
if 1<=a<=1000:
while a!=1:
if a%2==0:
a /= 2
sum += 1
else:
a = (3*a+1)/2
sum += 1
print(str(sum))
else:
print(" ")