深度學習之LSTM實現
阿新 • • 發佈:2019-01-10
LSTM之keras實現
import numpy as np
np.random.seed(2017) #為了復現
from __future__ import print_function
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import LSTM, Activation, Dense
from keras.optimizers import Adam
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#引數
#學習率
learning_rate = 0.001
#迭代次數
epochs = 2
#每塊訓練樣本數
batch_size = 128
#輸入
n_input = 28
#步長
n_step = 28
#LSTM Cell
n_hidden = 128
#類別
n_classes = 10
#x標準化到0-1 y使用one-hot 輸入 nxm的矩陣 每行m維切成n個輸入
X_train = X_train.reshape(-1, n_step, n_input)/255.
X_test = X_test.reshape(-1, n_step, n_input)/255.
y_train = np_utils.to_categorical(y_train, num_classes=10 )
y_test = np_utils.to_categorical(y_test, num_classes=10)
model = Sequential()
model.add(LSTM(n_hidden,
batch_input_shape=(None, n_step, n_input),
unroll=True))
model.add(Dense(n_classes))
model.add(Activation('softmax'))
adam = Adam(lr=learning_rate)
#顯示模型細節
model.summary()
model.compile(optimizer=adam,
loss='categorical_crossentropy' ,
metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1, #0不顯示 1顯示
validation_data=(X_test, y_test))
scores = model.evaluate(X_test, y_test, verbose=0)
print('LSTM test score:', scores[0]) #loss
print('LSTM test accuracy:', scores[1])
TensorFlow之LSTM
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# set random seed for comparing the two result calculations
tf.set_random_seed(1)
# this is data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# hyperparameters
lr = 0.001
training_iters = 100000
batch_size = 128
n_inputs = 28 # MNIST data input (img shape: 28*28)
n_steps = 28 # time steps
n_hidden_units = 128 # neurons in hidden layer 隱藏神經元個數
n_classes = 10 # MNIST classes (0-9 digits)
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])
# Define weights
weights = {
# (28, 128)
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
# (128, 10)
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
# (128, )
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
# (10, )
'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}
def RNN(X, weights, biases):
# hidden layer for input to cell
########################################
# transpose the inputs shape from
# X ==> (128 batch * 28 steps, 28 inputs)
X = tf.reshape(X, [-1, n_inputs])
# into hidden
# X_in = (128 batch * 28 steps, 128 hidden)
X_in = tf.matmul(X, weights['in']) + biases['in']
# X_in ==> (128 batch, 28 steps, 128 hidden)
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
# cell
##########################################
# basic LSTM Cell.
cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units)
# lstm cell is divided into two parts (c_state, h_state)
init_state = cell.zero_state(batch_size, dtype=tf.float32)
# You have 2 options for following step.
# 1: tf.nn.rnn(cell, inputs);
# 2: tf.nn.dynamic_rnn(cell, inputs).
# If use option 1, you have to modified the shape of X_in, go and check out this:
# https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py
# In here, we go for option 2.
# dynamic_rnn receive Tensor (batch, steps, inputs) or (steps, batch, inputs) as X_in.
# Make sure the time_major is changed accordingly.
outputs, final_state = tf.nn.dynamic_rnn(cell, X_in, initial_state=init_state, time_major=False)
# hidden layer for output as the final results
#############################################
# results = tf.matmul(final_state[1], weights['out']) + biases['out']
# # or
# unpack to list [(batch, outputs)..] * steps #交換維度
outputs = tf.unstack(tf.transpose(outputs, [1,0,2]))
results = tf.matmul(outputs[-1], weights['out']) + biases['out'] # shape = (128, 10)
return results
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
step = 0
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
sess.run([train_op], feed_dict={
x: batch_xs,
y: batch_ys,
})
if step % 20 == 0:
print(sess.run(accuracy, feed_dict={
x: batch_xs,
y: batch_ys,
}))
step += 1