1. 程式人生 > >目標檢測 cvpr iccv eccv最新進展,包含程式碼

目標檢測 cvpr iccv eccv最新進展,包含程式碼

https://github.com/amusi/awesome-object-detection

object-detection
Contents:

R-CNN
Fast R-CNN
Faster R-CNN
Light-Head R-CNN
Cascade R-CNN
SPP-Net
YOLO
YOLOv2
YOLOv3
SSD
DSSD
FSSD
ESSD
MDSSD
Pelee
R-FCN
FPN
RetinaNet
MegDet
DetNet
ZSD
cornernet

Rich feature hierarchies for accurate object detection and semantic segmentation

intro: R-CNN
arxiv: http://arxiv.org/abs/1311.2524
supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
github: https://github.com/rbgirshick/rcnn
notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
caffe-pr("Make R-CNN the Caffe detection example"): https://github.com/BVLC/caffe/pull/482

Fast R-CNN

Fast R-CNN

arxiv: http://arxiv.org/abs/1504.08083
slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
github: https://github.com/rbgirshick/fast-rcnn
github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco
webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
notes: http://blog.csdn.net/linj_m/article/details/48930179
github("Fast R-CNN in MXNet"): https://github.com/precedenceguo/mx-rcnn
github: https://github.com/mahyarnajibi/fast-rcnn-torch
github: https://github.com/apple2373/chainer-simple-fast-rnn
github: https://github.com/zplizzi/tensorflow-fast-rcnn

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.03414
paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
github(Caffe): https://github.com/xiaolonw/adversarial-frcnn

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

intro: NIPS 2015
arxiv: http://arxiv.org/abs/1506.01497
gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
github(Caffe): https://github.com/rbgirshick/py-faster-rcnn
github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/faster_rcnn
github(PyTorch--recommend): https://github.com//jwyang/faster-rcnn.pytorch
github: https://github.com/mitmul/chainer-faster-rcnn
github(Torch):: https://github.com/andreaskoepf/faster-rcnn.torch
github(Torch):: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
github(TensorFlow): https://github.com/smallcorgi/Faster-RCNN_TF
github(TensorFlow): https://github.com/CharlesShang/TFFRCNN
github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
github(Keras): https://github.com/yhenon/keras-frcnn
github: https://github.com/Eniac-Xie/faster-rcnn-resnet
github(C++): https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev

R-CNN minus R

intro: BMVC 2015
arxiv: http://arxiv.org/abs/1506.06981

Faster R-CNN in MXNet with distributed implementation and data parallelization

github: https://github.com/dmlc/mxnet/tree/master/example/rcnn

Contextual Priming and Feedback for Faster R-CNN

intro: ECCV 2016. Carnegie Mellon University
paper: http://abhinavsh.info/context_priming_feedback.pdf
poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf

An Implementation of Faster RCNN with Study for Region Sampling

intro: Technical Report, 3 pages. CMU
arxiv: https://arxiv.org/abs/1702.02138
github: https://github.com/endernewton/tf-faster-rcnn

Interpretable R-CNN

intro: North Carolina State University & Alibaba
keywords: AND-OR Graph (AOG)
arxiv: https://arxiv.org/abs/1711.05226

Light-Head R-CNN

Light-Head R-CNN: In Defense of Two-Stage Object Detector

intro: Tsinghua University & Megvii Inc
arxiv: https://arxiv.org/abs/1711.07264
github(offical): https://github.com/zengarden/light_head_rcnn
github: https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py#L784

Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection

arxiv: https://arxiv.org/abs/1712.00726
github: https://github.com/zhaoweicai/cascade-rcnn

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

intro: ECCV 2014 / TPAMI 2015
arxiv: http://arxiv.org/abs/1406.4729
github: https://github.com/ShaoqingRen/SPP_net
notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

intro: PAMI 2016
intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
project page: http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html
arxiv: http://arxiv.org/abs/1412.5661

Object Detectors Emerge in Deep Scene CNNs

intro: ICLR 2015
arxiv: http://arxiv.org/abs/1412.6856
paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
slides: http://places.csail.mit.edu/slide_iclr2015.pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

intro: CVPR 2015
project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
arxiv: https://arxiv.org/abs/1502.04275
github: https://github.com/YknZhu/segDeepM

Object Detection Networks on Convolutional Feature Maps

intro: TPAMI 2015
keywords: NoC
arxiv: http://arxiv.org/abs/1504.06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

arxiv: http://arxiv.org/abs/1504.03293
slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
github: https://github.com/YutingZhang/fgs-obj

DeepBox: Learning Objectness with Convolutional Networks

keywords: DeepBox
arxiv: http://arxiv.org/abs/1505.02146
github: https://github.com/weichengkuo/DeepBox

YOLO

You Only Look Once: Unified, Real-Time Object Detection

img

arxiv: http://arxiv.org/abs/1506.02640
code: https://pjreddie.com/darknet/yolov1/
github: https://github.com/pjreddie/darknet
blog: https://pjreddie.com/darknet/yolov1/
slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
github: https://github.com/gliese581gg/YOLO_tensorflow
github: https://github.com/xingwangsfu/caffe-yolo
github: https://github.com/frankzhangrui/Darknet-Yolo
github: https://github.com/BriSkyHekun/py-darknet-yolo
github: https://github.com/tommy-qichang/yolo.torch
github: https://github.com/frischzenger/yolo-windows
github: https://github.com/AlexeyAB/yolo-windows
github: https://github.com/nilboy/tensorflow-yolo

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
github: https://github.com/thtrieu/darkflow

Start Training YOLO with Our Own Data

img

intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
blog: http://guanghan.info/blog/en/my-works/train-yolo/
github: https://github.com/Guanghan/darknet

YOLO: Core ML versus MPSNNGraph

intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph

TensorFlow YOLO object detection on Android

intro: Real-time object detection on Android using the YOLO network with TensorFlow
github: https://github.com/natanielruiz/android-yolo

Computer Vision in iOS – Object Detection

blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
github:https://github.com/r4ghu/iOS-CoreML-Yolo

YOLOv2

YOLO9000: Better, Faster, Stronger

arxiv: https://arxiv.org/abs/1612.08242
code: http://pjreddie.com/yolo9000/ https://pjreddie.com/darknet/yolov2/
github(Chainer): https://github.com/leetenki/YOLOv2
github(Keras): https://github.com/allanzelener/YAD2K
github(PyTorch): https://github.com/longcw/yolo2-pytorch
github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
github(Windows): https://github.com/AlexeyAB/darknet
github: https://github.com/choasUp/caffe-yolo9000
github: https://github.com/philipperemy/yolo-9000

darknet_scripts

intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?
github: https://github.com/Jumabek/darknet_scripts

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

github: https://github.com/AlexeyAB/Yolo_mark

LightNet: Bringing pjreddie’s DarkNet out of the shadows

YOLO v2 Bounding Box Tool

intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.
github: https://github.com/Cartucho/yolo-boundingbox-labeler-GUI

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

intro: LRM is the first hard example mining strategy which could fit YOLOv2 perfectly and make it better applied in series of real scenarios where both real-time rates and accurate detection are strongly demanded.
arxiv: https://arxiv.org/abs/1804.04606

Object detection at 200 Frames Per Second

intro: faster than Tiny-Yolo-v2
arXiv: https://arxiv.org/abs/1805.06361

YOLOv3

YOLOv3: An Incremental Improvement

arxiv:https://arxiv.org/abs/1804.02767
paper:https://pjreddie.com/media/files/papers/YOLOv3.pdf
code: https://pjreddie.com/darknet/yolo/
github(Official):https://github.com/pjreddie/darknet
github:https://github.com/experiencor/keras-yolo3
github:https://github.com/qqwweee/keras-yolo3
github:https://github.com/marvis/pytorch-yolo3
github:https://github.com/ayooshkathuria/pytorch-yolo-v3
github:https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch

SSD

SSD: Single Shot MultiBox Detector

img

intro: ECCV 2016 Oral
arxiv: http://arxiv.org/abs/1512.02325
paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf
github(Official): https://github.com/weiliu89/caffe/tree/ssd
video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
github: https://github.com/zhreshold/mxnet-ssd
github: https://github.com/zhreshold/mxnet-ssd.cpp
github: https://github.com/rykov8/ssd_keras
github: https://github.com/balancap/SSD-Tensorflow
github: https://github.com/amdegroot/ssd.pytorch
github(Caffe): https://github.com/chuanqi305/MobileNet-SSD

What’s the diffience in performance between this new code you pushed and the previous code? #327

DSSD : Deconvolutional Single Shot Detector

intro: UNC Chapel Hill & Amazon Inc
arxiv: https://arxiv.org/abs/1701.06659
github: https://github.com/chengyangfu/caffe/tree/dssd
github: https://github.com/MTCloudVision/mxnet-dssd
demo: http://120.52.72.53/www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4

Enhancement of SSD by concatenating feature maps for object detection

intro: rainbow SSD (R-SSD)
arxiv: https://arxiv.org/abs/1705.09587

Context-aware Single-Shot Detector

keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
arxiv: https://arxiv.org/abs/1707.08682

Feature-Fused SSD: Fast Detection for Small Objects

FSSD: Feature Fusion Single Shot Multibox Detector

Weaving Multi-scale Context for Single Shot Detector

intro: WeaveNet
keywords: fuse multi-scale information
arxiv: https://arxiv.org/abs/1712.03149

ESSD

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects

arxiv: https://arxiv.org/abs/1805.07009

Pelee

Pelee: A Real-Time Object Detection System on Mobile Devices

intro: (ICLR 2018 workshop track)

arxiv: https://arxiv.org/abs/1804.06882

github: https://github.com/Robert-JunWang/Pelee

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

arxiv: http://arxiv.org/abs/1605.06409
github: https://github.com/daijifeng001/R-FCN
github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/rfcn
github: https://github.com/Orpine/py-R-FCN
github: https://github.com/PureDiors/pytorch_RFCN
github: https://github.com/bharatsingh430/py-R-FCN-multiGPU
github: https://github.com/xdever/RFCN-tensorflow

R-FCN-3000 at 30fps: Decoupling Detection and Classification

Recycle deep features for better object detection

arxiv: http://arxiv.org/abs/1607.05066

FPN

Feature Pyramid Networks for Object Detection

intro: Facebook AI Research
arxiv: https://arxiv.org/abs/1612.03144

Action-Driven Object Detection with Top-Down Visual Attentions

arxiv: https://arxiv.org/abs/1612.06704

Beyond Skip Connections: Top-Down Modulation for Object Detection

intro: CMU & UC Berkeley & Google Research
arxiv: https://arxiv.org/abs/1612.06851

Wide-Residual-Inception Networks for Real-time Object Detection

intro: Inha University
arxiv: https://arxiv.org/abs/1702.01243

Attentional Network for Visual Object Detection

intro: University of Maryland & Mitsubishi Electric Research Laboratories
arxiv: https://arxiv.org/abs/1702.01478

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

keykwords: CC-Net
intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
arxiv: https://arxiv.org/abs/1702.07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

intro: ICCV 2017 (poster)
arxiv: https://arxiv.org/abs/1703.10295

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.03944

Spatial Memory for Context Reasoning in Object Detection

arxiv: https://arxiv.org/abs/1704.04224

Accurate Single Stage Detector Using Recurrent Rolling Convolution

intro: CVPR 2017. SenseTime
keywords: Recurrent Rolling Convolution (RRC)
arxiv: https://arxiv.org/abs/1704.05776
github: https://github.com/xiaohaoChen/rrc_detection

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
arxiv: https://arxiv.org/abs/1705.05922

Point Linking Network for Object Detection

intro: Point Linking Network (PLN)
arxiv: https://arxiv.org/abs/1706.03646

Perceptual Generative Adversarial Networks for Small Object Detection

Few-shot Object Detection

Yes-Net: An effective Detector Based on Global Information

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

Towards lightweight convolutional neural networks for object detection

RON: Reverse Connection with Objectness Prior Networks for Object Detection

intro: CVPR 2017
arxiv: https://arxiv.org/abs/1707.01691
github: https://github.com/taokong/RON

Mimicking Very Efficient Network for Object Detection

intro: CVPR 2017. SenseTime & Beihang University
paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf

Residual Features and Unified Prediction Network for Single Stage Detection

Deformable Part-based Fully Convolutional Network for Object Detection

intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
arxiv: https://arxiv.org/abs/1707.06175

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1707.06399

Recurrent Scale Approximation for Object Detection in CNN

intro: ICCV 2017
keywords: Recurrent Scale Approximation (RSA)
arxiv: https://arxiv.org/abs/1707.09531
github: https://github.com/sciencefans/RSA-for-object-detection

DSOD

DSOD: Learning Deeply Supervised Object Detectors from Scratch

img

intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
arxiv: https://arxiv.org/abs/1708.01241
github: https://github.com/szq0214/DSOD
github:https://github.com/Windaway/DSOD-Tensorflow
github:https://github.com/chenyuntc/dsod.pytorch

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

arxiv:https://arxiv.org/abs/1712.00886
github:https://github.com/szq0214/GRP-DSOD

RetinaNet

Focal Loss for Dense Object Detection

intro: ICCV 2017 Best student paper award. Facebook AI Research
keywords: RetinaNet
arxiv: https://arxiv.org/abs/1708.02002

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1708.02863

Incremental Learning of Object Detectors without Catastrophic Forgetting

intro: ICCV 2017. Inria
arxiv: https://arxiv.org/abs/1708.06977

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

Dynamic Zoom-in Network for Fast Object Detection in Large Images

Zero-Annotation Object Detection with Web Knowledge Transfer

intro: NTU, Singapore & Amazon
keywords: multi-instance multi-label domain adaption learning framework
arxiv: https://arxiv.org/abs/1711.05954

MegDet

MegDet: A Large Mini-Batch Object Detector

intro: Peking University & Tsinghua University & Megvii Inc
arxiv: https://arxiv.org/abs/1711.07240

Single-Shot Refinement Neural Network for Object Detection

arxiv: https://arxiv.org/abs/1711.06897
github: https://github.com/sfzhang15/RefineDet

Receptive Field Block Net for Accurate and Fast Object Detection

intro: RFBNet
arxiv: https://arxiv.org/abs/1711.07767
github: https://github.com//ruinmessi/RFBNet

An Analysis of Scale Invariance in Object Detection - SNIP

arxiv: https://arxiv.org/abs/1711.08189
github: https://github.com/bharatsingh430/snip

Feature Selective Networks for Object Detection

Learning a Rotation Invariant Detector with Rotatable Bounding Box

arxiv: https://arxiv.org/abs/1711.09405
github: https://github.com/liulei01/DRBox

Scalable Object Detection for Stylized Objects

intro: Microsoft AI & Research Munich
arxiv: https://arxiv.org/abs/1711.09822

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

arxiv: https://arxiv.org/abs/1712.00886
github: https://github.com/szq0214/GRP-DSOD

Deep Regionlets for Object Detection

keywords: region selection network, gating network
arxiv: https://arxiv.org/abs/1712.02408

Training and Testing Object Detectors with Virtual Images

intro: IEEE/CAA Journal of Automatica Sinica
arxiv: https://arxiv.org/abs/1712.08470

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
arxiv: https://arxiv.org/abs/1712.08832

Spot the Difference by Object Detection

intro: Tsinghua University & JD Group
arxiv: https://arxiv.org/abs/1801.01051

Localization-Aware Active Learning for Object Detection

arxiv: https://arxiv.org/abs/1801.05124

Object Detection with Mask-based Feature Encoding

LSTD: A Low-Shot Transfer Detector for Object Detection

intro: AAAI 2018
arxiv: https://arxiv.org/abs/1803.01529

Domain Adaptive Faster R-CNN for Object Detection in the Wild

intro: CVPR 2018. ETH Zurich & ESAT/PSI
arxiv: https://arxiv.org/abs/1803.03243

Pseudo Mask Augmented Object Detection

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

Zero-Shot Detection

intro: Australian National University
keywords: YOLO
arxiv: https://arxiv.org/abs/1803.07113

Learning Region Features for Object Detection

intro: Peking University & MSRA
arxiv: https://arxiv.org/abs/1803.07066

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

intro: Singapore Management University & Zhejiang University
arxiv: https://arxiv.org/abs/1803.08208

Object Detection for Comics using Manga109 Annotations

intro: University of Tokyo & National Institute of Informatics, Japan
arxiv: https://arxiv.org/abs/1803.08670

Task-Driven Super Resolution: Object Detection in Low-resolution Images

Transferring Common-Sense Knowledge for Object Detection

Multi-scale Location-aware Kernel Representation for Object Detection

intro: CVPR 2018
arxiv: https://arxiv.org/abs/1804.00428
github: https://github.com/Hwang64/MLKP

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

intro: National University of Defense Technology
arxiv: https://arxiv.org/abs/1804.04606

Robust Physical Adversarial Attack on Faster R-CNN Object Detector

DetNet: A Backbone network for Object Detection

intro: Tsinghua University & Face++

arxiv: https://arxiv.org/abs/1804.06215

3D Object Detection

LMNet: Real-time Multiclass Object Detection on CPU using 3D LiDARs

arxiv: https://arxiv.org/abs/1805.04902
github: https://github.com/CPFL/Autoware/tree/feature/cnn_lidar_detection

ZSD

Zero-Shot Object Detection

arxiv: https://arxiv.org/abs/1804.04340

Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts

arxiv: https://arxiv.org/abs/1803.06049

Zero-Shot Object Detection by Hybrid Region Embedding

arxiv: https://arxiv.org/abs/1805.06157

Other

Relation Network for Object Detection

intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.11575

Quantization Mimic: Towards Very Tiny CNN for Object Detection

Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3

arxiv: https://arxiv.org/abs/1805.02152

Learning Rich Features for Image Manipulation Detection

intro: CVPR 2018 Camera Ready
arxiv: https://arxiv.org/abs/1805.04953

開原始碼主頁
單個卷積神經網路將目標包圍框(bounding box)檢測轉化為一對關鍵點對(paired keypoints)的檢測

https://github.com/umich-vl/CornerNet

【CVPR2018】Learning to See in the Dark

開源地址與原論文如下,有同學想深入研究可以閱讀論文和原始碼:
Github:https://github.com/cchen156/Learning-to-See-in-the-Dark
Paper:http://cchen156.web.engr.illinois.edu/paper/18CVPR_SID.pdf

相關推薦

目標檢測 cvpr iccv eccv最新進展包含程式碼

https://github.com/amusi/awesome-object-detection object-detection Contents: R-CNN Fast R-CNN Faster R-CNN Light-Head R-CNN Cascad

目標檢測】NMS(Non-maximum suppression非極大值抑制)演算法

NMS廣泛應用於目標檢測演算法中。其目的是為了消除多餘的候選框,找到最佳的物體檢測位置。 現在假設有有一個候選的boxes的集合B和其對應的scores集合S: 1. 找出分數最高的M; 2. 將M對應的box從B中刪除; 3. 將刪除的box新增到集合D中;

深度學習(目標檢測)---從RCNN到SSD這應該是最全的一份目標檢測演算法盤點

目標檢測是很多計算機視覺任務的基礎,不論我們需要實現影象與文字的互動還是需要識別精細類別,它都提供了可靠的資訊。本文對目標檢測進行了整體回顧,第一部分從RCNN開始介紹基於候選區域的目標檢測器,包括Fast R-CNN、Faster R-CNN 和 FPN等。第二部分則重點討

目標檢測演算法綜述:R-CNNfaster R-CNNyoloSSDyoloV2

1 引言 深度學習目前已經應用到了各個領域,應用場景大體分為三類:物體識別,目標檢測,自然語言處理。上文我們對物體識別領域的技術方案,也就是CNN進行了詳細的分析,對LeNet-5 AlexNet VGG Inception ResNet MobileNet等各種優秀的模型

目標檢測必須要OpenCV?10行Python程式碼也能實現親測好用!

短短10行程式碼就可以實現目標檢測?!本文作者和他的團隊構建了一個名為ImageAI 的Python庫,集成了現今流行的深度學習框架和計算機視覺庫。本文將手把手教你構建自己的第一個目標檢測應用,而且文摘菌已經幫你踩過坑了,親測有效!無人超市、人臉識別、無人駕駛,眾多的使用場景

利用js自動檢測pc端和移動端js程式碼需要寫兩個網頁一個pc一個移動端

假設pc/index.html是pc端的網頁,mobile/index.html是移動端的網頁 在外部設定一個html進行判斷,分別跳轉; //判斷如果是pc端,自動跳到pc/index.html //安卓手機自動跳到mobile/

目標檢測最新進展(SSDRCNN等最新發展)

【未完待續】 【目錄】 SSD: RetinaNet FSSD (Feature Fusion Single Shot Multibox Detector) RFBNet (Receptive Field Block Net) R-FCN R

目標檢測最新進展總結與展望

導言 目標檢測是計算機視覺和數字影象處理的一個熱門方向,廣泛應用於機器人導航、智慧視訊監控、工業檢測、航空航天等諸多領域,通過計算機視覺減少對人力資本的消耗,具有重要的現實意義。因此,目標檢測也就成為了近年來理論和應用的研究熱點,它是影象處理和計算機視覺學科的重要分支,也是智慧監控系統

近幾年ICCVCVPR,和ECCV論文列表[轉載]

原文連結:http://www.cnblogs.com/cutepig/archive/2007/08/07/846945.html http://www.informatik.uni-trier.de/~ley/db/conf/cvpr/index.htmlhttp:

百度視覺團隊斬獲 ECCV Google AI 目標檢測競賽冠軍獲獎方案全解讀 | ECCV 2018

以下為百度視覺團隊技術方案解讀: 存在挑戰 與傳統的檢測資料集合相比,該賽事除了資料規模大、更真實之外,還存在一系列的挑戰。具體來說,主要集中在以下三個方面: 資料分佈不均衡:最少的類別框選只有 14 個,而最多的類別框選超過了 140w,資料分佈嚴重不均衡

R-FCN每秒30幀實時檢測3000類物體馬里蘭大學Larry Davis組最新目標檢測工作

【導讀】美國馬里蘭大學、復旦大學和Gobasco人工智慧實驗室聯合提出R-FCN-3000實時3000類目標檢測框架,對R-FCN框架中的物體檢測和分類進行解耦。本文對R-FCN體系結構進行修改,其中位置敏感濾波器在不同的目標類之間共享來進行定位。對於細粒度的分類,這些位

FCOS : 找到訣竅了anchor-free的one-stage目標檢測演算法也可以很準 | ICCV 2019

論文提出anchor-free和proposal-free的one-stage的目標檢測演算法FCOS,不再需要anchor相關的的超引數,在目前流行的逐畫素(per-pixel)預測方法上進行目標檢測,根據實驗結果來看,FCOS能夠與主流的檢測演算法相比較,達到SOTA,為後面的大熱的anchor-fre

騰訊推出超強少樣本目標檢測演算法公開千類少樣本檢測訓練集FSOD | CVPR 2020

論文提出了新的少樣本目標檢測演算法,創新點包括Attention-RPN、多關係檢測器以及對比訓練策略,另外還構建了包含1000類的少樣本檢測資料集FSOD,在FSOD上訓練得到的論文模型能夠直接遷移到新類別的檢測中,不需要fine-tune   來源:曉飛的演算法工程筆記 公眾號 論文: Few-Sho

曠世提出類別正則化的域自適應目標檢測模型緩解場景多樣的痛點 | CVPR 2020

> 論文基於DA Faster R-CNN系列提出類別正則化框架,充分利用多標籤分類的弱定位能力以及圖片級預測和例項級預測的類一致性,從實驗結果來看,類該方法能夠很好地提升DA Faster R-CNN系列的效能   來源:曉飛的演算法工程筆記 公眾號 **論文: Exploring Cate

PIoU Loss:傾斜目標檢測專用損失函式公開超難傾斜目標資料集Retail50K | ECCV 2020 Spotlight

> 論文提出從IoU指標延伸來的PIoU損失函式,能夠有效地提高傾斜目標檢測場景下的旋轉角度預測和IoU效果,對anchor-based方法和anchor-free方法均適用。另外論文提供了Retail50K資料集,能夠很好地用於評估傾斜目標檢測演算法的效能   來源:曉飛的演算法工程筆記 公

第二十五節目標定位、特征點檢測依據目標檢測

回顧 邏輯 預測 簡單 AS 其中 輸入 操作 功能 一 目標定位 對象檢測,它是計算機視覺領域中一個新興的應用方向,相比前兩年,它的性能越來越好。在構建對象檢測之前,我們先了解一下對象定位,首先我們看看它的定義。 圖片分類任務我們已經熟悉了,就是算法遍歷圖片,判斷其中的

學習筆記-目標檢測、定位、識別(RCNNFast-RCNN, Faster-RCNNMask-RCNNYOLOSSD 系列)

0. 前言 說到深度學習的目標檢測,就要提到傳統的目標檢測方法。 傳統的目標檢測流程: 1)區域選擇(窮舉策略:採用滑動視窗,且設定不同的大小,不同的長寬比對影象進行遍歷,時間複雜度高) 2)特徵提取(SIFT、HOG等;形態多樣性、光照變化多樣性、背景多樣性使得特徵魯棒性差)

港中大、商湯開源目標檢測工具包mmdetection對比Detectron如何?

參加 2018 AI開發者大會,請點選 ↑↑↑ 近日,香港中文大學-商湯聯合實驗室開源了基於 PyTorch 的檢測庫——mmdetection。上個月,商湯和港中大組成的團隊在 COCO 比賽的物體檢測(Detection)專案中奪得冠軍,而 mmdetection 正是基

DOSD用scratch的方式訓練通用目標檢測效能很高

推薦一篇今年ICCV上基於DenseNet的general object detection的工作。這是目前已知的第一篇在完全脫離ImageNet pre-train模型的情況下使用deep model在有限的訓練資料前提下能做到state-of-the-art performance的工作,同