tensorflow(6)——卷積神經網路
阿新 • • 發佈:2019-01-12
學習《Tensorflow入門教程》記錄
卷積神經網路流程框圖如下:
First Conv and Pool Layers ——Second Conv and Pool Layers——First Fully Connected Layer——Dropout Layer——Second Fully Connected Layer——Final Layer
池化層簡單理解:把卷積得到的結果進行降維處理。
示例程式碼:
import tensorflow as tf import random import numpy as np import matplotlib.pyplot as plt import datetime from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("data/", one_hot=True) tf.reset_default_graph() sess = tf.InteractiveSession() x = tf.placeholder("float", shape = [None, 28,28,1]) y_ = tf.placeholder("float", shape = [None, 10]) #5*5的卷積核 1個通道的輸入影象 32個不同的卷積核,得到32個特徵圖 W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) #偏置 b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #進行卷積運算 #[1, 1, 1, 1] 中間2個1,卷積每次滑動的步長 #padding='SAME' 邊緣自動補充 h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1 h_conv1 = tf.nn.relu(h_conv1) #進行池化 h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #定義為函式 def conv2d(x, W): return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #全連線層 W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(.1, shape = [64])) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #First Fully Connected Layer #經過了2次卷積和池化 28*28*1變成了7*7*64 定義得到了1024維特徵 W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(.1, shape = [1024])) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #把特徵拉成1條 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #Dropout Layer,防止過擬合 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #第二次全連線層 W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(.1, shape = [10])) #Final Layer y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y)) trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.global_variables_initializer()) batchSize = 50 for i in range(1000): batch = mnist.train.next_batch(batchSize) trainingInputs = batch[0].reshape([batchSize,28,28,1]) trainingLabels = batch[1] if i%100 == 0: trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0}) print ("step %d, training accuracy %g"%(i, trainAccuracy)) trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})
執行結果:
step 0, training accuracy 0.2
step 100, training accuracy 0.84
step 200, training accuracy 1
step 300, training accuracy 0.96
step 400, training accuracy 1
step 500, training accuracy 0.96
step 600, training accuracy 1
step 700, training accuracy 0.96
step 800, training accuracy 0.96
step 900, training accuracy 0.96