Data Science Evangelist | Open position
Our Data Science team is composed of people from around the globe united by their passion for predicting the future. From top Kagglers to engineers with deep algorithmic knowledge, we all love making DataRobot’s predictions better and faster. DataRobot is an ideal place to learn from the top Data Scientists in the world, and teach them a thing or two along the way.
相關推薦
Data Science Evangelist | Open position
Our Data Science team is composed of people from around the globe united by their passion for predicting the future. From top Kagglers to engineers with d
Applied Data Science Associate | Open position
Our Data Science team is composed of people from around the globe united by their passion for predicting the future. From top Kagglers to engineers with d
Learnings from a Data Science Conference, Open Data Science Europe
Learnings from a Data Science Conference, Open Data Science EuropeLast week I attended Open Data Science Europe hosted at the Novotel, London West. This is
Customer Facing Data Scientist (Osaka) | Open position
Our Data Science team is composed of people from around the globe united by their passion for predicting the future. From top Kagglers to engineers with d
Open Data Science Conference
Hosted in London, ODSC 2018 is one of the largest applied data science conferences in Europe. Our speakers include some of the core c
Customer Facing Data Scientist | Open position
Our Data Science team is composed of people from around the globe united by their passion for predicting the future. From top Kagglers to engineers with d
Data Scientist, AI Services | Open position
Our Data Science team is composed of people from around the globe united by their passion for predicting the future. From top Kagglers to engineers with d
Software Engineer (Feature Engineering & Data Transformation) | Open position
DataRobot Engineering is a hard-working, fast moving, fun-loving team of developers who put product before pride. Our team is flexible and adaptable. We ge
Data Scientist | Open position
Our Data Science team is composed of people from around the globe united by their passion for predicting the future. From top Kagglers to engineers with d
Big Data Engineer, AI Services | Open position
Responsibilities: Build end-to-end ETL pipelines to enable training and operationalization of machine learning models. Build code for ingesting data
Bioconductor(Bioconductor for Genomic Data Science教程)
mic arc nbsp nba for hub 教程 enc 文件 Bioconductor for Genomic Data Science ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Bacteri
在博客園使用LaTex編輯論文級別data science文章
博客園 Go 效果 公式 過程 第一個 基本 CI 一行 第一個例子我們看看在行文過程中,我們需要一段公式: $p={12\over q}$ ,隨後我們觀察效果。再來另外一個使用\ (來做分界符的行內\(p={12\over q}\)latex公式 在下面的例子,我們有一大
Python data science two pandas basic
from pandas import Series import pandas as pd s=Series([1,2,'ww','tt']) s #series可以自定義索引 s2=Series(['wangxing','man',24],index=['name','sex','
Python data science thd numpy basic
Numpy最重要的一個特 (ndarray)點是其N維陣列物件,該物件是一個快速而靈活地大資料集容器 建立ndarray建立陣列最簡單的方法就是使用array函式,它接收一切陣列性的物件,然後產生一個新的含有傳入陣列的NumPy物件 data=[2,3,4] arr1=np.arra
Python data science one
在常見的資料探勘中,dirty data的內容: 缺失值,異常值,不一致的值,重複的資料以及含有特殊符號(如#,*,等) 異常值往往十分的具有價值,重視異常值的出現,分析其產生的原因,常常成為發現問題而進而改進決策的契機 異常值分析:1st進行簡單的統計量分析,最常用的是最大值,最小值,
kaggle 2018 data science bowl 細胞核分割學習筆記
一、 獲獎者解決方案 1. 第一名解決方案(Unet 0.631) 主要的貢獻 targets: 預測touching borders,將問題作為instance分割 loss function:組合交叉熵跟soft dice loss,避免pixel imbalance問題
Data Science in Python
Comprehensive learning path – Data Science in Python Journey from a Python noob to a Kaggler on Python So, you want to become a d
ANZ Chengdu Data Science Competition——BASELINE 澳新銀行存款大資料建模預測
# -*- coding: utf-8 -*- """ Created on Fri Nov 9 09:58:21 2018 @author: Lenovo """ import lightgbm as lgb import pandas as pd from sklearn.model_
Data Science Competition中的工具彙總
除了基礎的pandas,scikit-learn,numpy,matplotlib,seaborn以外 ( 1 ) category_encoders github 屬於scikit-learn compatible projects之一,下面是Binary Encoding和One-hot Encodi
File System, Kernel Data Structures, and Open Files(檔案系統,核心資料結構,與開啟檔案)
寫在前面 本文來自 USNA(美國海軍學院)系統程式設計課的講義,現將其翻譯在此,由於沒有版權所以 謝絕任何轉載,如果你能拿到版權,當我沒說 本人英文水平較弱,有錯誤請大家幫忙指出 關於核心結構,我沒有看過最近的 Linux 系統核心,所以是否真如文章說的那