乘法逆元、擴充套件歐幾里得演算法、二元一次方程、a的n次方取餘
知識點:乘法逆元,逆元的求法,二元一次方程求通解,a的n次方求餘數
一,乘法逆元
乘法逆元的概念類似於倒數(
如果
題目:http://acm.hdu.edu.cn/showproblem.php?pid=5685
逆元的作用:已知
相關推薦
51nod 1256 乘法逆元(擴充套件歐幾里得演算法)
思路1:把k*M%N=1可以寫成一個不定方程,(k*M)%N=(N*x+1)%N,那麼就是求k*M-N*x=1使得k最小,不定方程利用擴充套件歐幾里得演算法 --------------------------------------------------------
乘法逆元(擴充套件歐幾里得)
下面是乘法逆元的一個演算法 #define low16(x) ((x) & 0xFFFF) static unsigned short MulInv(unsigned short x) { u
乘法逆元與擴充套件歐幾里得
逆元的定義 滿足a*k≡1 (mod p)的k值就是a關於p的乘法逆元。 如何求k值 (a,p互質) 可以將a*k≡1 (mod p)轉化為a*k+b*p=1即ax+by=d=gcd(a,b) ax+
乘法逆元、擴充套件歐幾里得演算法、二元一次方程、a的n次方取餘
知識點:乘法逆元,逆元的求法,二元一次方程求通解,a的n次方求餘數 一,乘法逆元 乘法逆元的概念類似於倒數(ax=1,a−1=x),不過是在取餘數的情況下的倒數。 如果(a×x)%p=1,則稱x是a模p的逆元。另一種記法:ax=1(modp),即等
求組合數取模(楊輝三角打表 & 求逆元(擴充套件歐幾里得、費馬小定理、尤拉定理、線性求法) & Lucas)
在acm競賽中,組合數取模的題目還是經常會見到的,所以這是有必要掌握的一個演算法。我本人就因為這個東西而被坑了很多次了= =之前的部落格也都扯過了,就不多說了,下面進入正題。 (1)楊輝三角求組合數 楊輝三角這個東西應該都不陌生,三角的兩邊始終為一,之後向
【未完成】除法取模、逆元、擴充套件歐幾里得演算法
1.+,-,*都可以直接取模,但是除法不可以(模素數相當於換了數域,因為數域變成了有限域,有限域上沒有除法,要換成乘以逆元)。 2.除法取模要變成乘它的逆元。 a * x MOD m == 1則稱X為A關於模m的乘法逆元,其中a和m必須互素。 3.當m為素數時可以使用
除法取模逆元,擴充套件歐幾里得,費馬小定理[數學]
一、除法取模逆元 在演算法設計中,常會遇到求 a/b mod m的計算,當a很大,或者b很大,使得a/b的值無法直接計算的時候,通常採用逆元的方法,化除法為乘法。(逆元的概念在離散數學中 有學習) a
各種密碼學演算法的GUI程式設計實現(DES、AES、Present、擴充套件歐幾里得演算法、素性檢測)
encryption-algorithm 各種密碼學演算法的 C# GUI程式設計實現,包含: DES AES Present 擴充套件歐幾里得演算法 素性檢測 最終的結果 DES加密 DES解密
【專題】歐幾里得演算法、擴充套件歐幾里得、乘法逆元
1.歐幾里得 用途 最大公因數和最小公倍數 定理: gcd(a,b)=gcd(b,a%b) 證明: 我們令c=gcd(a,b) 令a=n∗c , b=m∗c a%b=a−k
歐幾里德演算法、擴充套件歐幾里德演算法、乘法逆元
最近看了一本書《程式設計師》裡面說的一個面試題: 求兩個數的最大公約數: SoEasy的題目看過C 的人都知道怎麼寫這個程式 1.傳統方法:窮舉 #include <math.h>int main(){int m=1970,n=1066,p=0;p=m<n?m:n;for(;p>=1
擴充套件歐幾里得演算法(求乘法逆元)
eg:求5關於模14的乘法逆元 15 = 5*2+1 5 = 4*1+1 說明5與14互素,存在5關於14的乘法逆元 1 = 5-4 = 5-(14-5*2)= 5*3-14 因此5關於模14的乘法逆元為3 a存在模b的乘法逆元的充要條件是gcd(a,b)= 1 互質
擴充套件歐幾里得演算法(乘法逆元 最小正整數解 直線上的整數點)
參考資料: 本文證明過程來自百度百科和劉汝佳的演算法入門經典。 擴充套件歐幾里得演算法介紹: 前置知識:歐幾里得演算法(其實就是輾轉相除法,用於計算兩個整數a,b的最大公約數。) 歐幾里得演算法: 在開始之前,我們先說明幾個定理: gcd(a,b)=gcd(b,a
淺析逆元、擴充套件歐幾里得、類歐幾里得和莫比烏斯反演(填坑ing)
逆元 扯一點沒有多大用的東西 在數論裡面,我們不把倒數叫做倒數,而叫做逆元(純屬裝逼) 逆元的作用很大,先來看點easy的栗子 某些性質 a+b≡amodp+bmodp(modp)a+b≡amodp+bmodp(modp) a−b≡am
#數論# 歐幾里德演算法 、擴充套件歐幾里德演算法 、費馬小、逆元求解(ing)
歐幾里德求gcd(輾轉相除法): 定理: gcd(a, b) = gcd(b, a % b) 兩個正整數a和b(a>b),它們的最大公約數等於a除以b的餘數c和b之間的最大公約數 證明: a可以表示成a = kb + r,則r = a %
乘法逆元詳解【費馬小定理+擴充套件歐幾里得演算法】
乘法逆元 何為乘法逆元? 對於兩個數a,pa,p若gcd(a,p)=1gcd(a,p)=1則一定存在另一個數bb,使得ab≡1(modp)ab≡1(modp),並稱此時的bb為aa關於11模pp的乘法逆元。我們記此時的bb為inv(a)inv(a)或a−1a
演算法複習——擴充套件歐幾里得演算法(擴充套件歐幾里得,逆元,整除)
①歐幾里得演算法 就是求gcd的有趣的輾轉相除法,不再贅述啦0v0 程式碼: int gcd(int a,int b) { if(b==0) return a; else return gcd(b,a%b); } ②擴充套件歐幾里得演算法 需要解決這樣的問題:兩個非0整數a,b
擴充套件歐幾里得演算法及求逆元
師父的擴充套件歐幾里得演算法詳細部落格師父喲 大神的求逆元詳細部落格大神的呢 gcd(a,b)即求a和b的最大公約。用輾轉相除法求得。 擴充套件歐幾里得演算法是歐幾里得演算法(又叫輾轉相除法)的擴充套件。除了計算a、b兩個整數的最大公約數,此演算法還能找到
hiho1530(乘法逆元)(擴展歐幾裏得)
利用 fault clu 技術分享 GC pos exgcd 其中 div #1530 : 分數取模 時間限制:1000ms 單點時限:10000ms 內存限制:256MB 描述 給定三個正整數 a、 b 和 p,滿足 b 和 p 互質。這時分數 a / b
(擴充套件)歐幾里得演算法、素性測試、埃式篩法、區間篩法、快速冪運算
來自挑戰程式設計競賽2.6 數學問題的解題竅門 1.歐幾里得演算法 求解最大公約數,時間複雜度在O(log max(a,b))以內,可以看出,輾轉相除法是非常高效的 int gcd(int a,int b) { return (b==0)?a:gcd(b,a%b);
UVA - 12169 -擴充套件歐幾里得演算法
#include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> #define ll long long #define rep(i,j,k) for(int i=j;