1. 程式人生 > >歐幾里得演算法的證明

歐幾里得演算法的證明

證明

要證歐幾里德演算法成立,即證: gcd(a,b)=gcd(b,r),其中 gcd是取最大公約數的意思,r=a mod b
下面證 gcd(a,b)=gcd(b,r)
設 c是a,b的最大公約數,即c=gcd(a,b),則有 a=mc,b=nc,其中m,n為正整數,且m,n互為質數
由 r= a mod b可知,r= a- qb 其中,q是正整數,
則 r=a-qb=mc-qnc=(m-qn)c
b=nc,r=(m-qn)c,且n,(m-qn)互質(假設n,m-qn不互質,則n=xd, m-qn=yd 其中x,y,d都是正整數,且d>1
則a=mc=(qx+y)dc, b=xdc,這時a,b 的最大公約數變成dc,與前提矛盾,
所以n ,m-qn一定互質)
則gcd(b,r)=c=gcd(a,b)
得證。

相關推薦

演算法證明及python實現

1.歐幾里得演算法:         歐幾里得演算法又稱輾轉相除法,是求兩個整數的最大公約數非常有效的演算法,具體內容是:兩個整數的最大公約數等於其中較小的那個數和兩數相除餘數的最大公約數。 2.歐幾里得演算法證明 :                  a可以表示成a

演算法的推導與證明 || 擴充套件演算法的解釋說明

序言:      當博主第一次見到歐幾里德演算法時,我是不屑一顧的,由於模板比較好背,所以也沒有仔細研究過其中的數學原理.這段時間突然喜歡上了數學,碰巧同學講了一下基礎數論,就去聽了一聽. 由於博主數學基礎和學習能力都比較差,沒有立即消化其中的知識,於是研究

演算法證明

證明 要證歐幾里德演算法成立,即證: gcd(a,b)=gcd(b,r),其中 gcd是取最大公約數的意思,r=a mod b 下面證 gcd(a,b)=gcd(b,r) 設 c是a,b的最大公約數,即c=gcd(a,b),則有 a=mc

演算法(輾轉相除法)描述,證明和python實現

greatest common divisor 又稱輾轉相除法 演算法描述:給定兩個正整數m和n,求他們的最大公因子,即能夠同時整除m和n的最大正整數。 演算法步驟: 若m<n,那麼m↔n,為了確保m>n。 求m除以n得到的餘數r。 若r為0,演算法

同餘定理(演算法

如果  (a-b)%m==0  那麼 a%m==0  b%m==0 a,b關於模m同餘。   求最大公約數 #include "pch.h" #include<iostream> #include<cstdio> #include<

演算法 2018-10-18

歐幾里得演算法就是輾轉相除。 歐幾里得演算法和輾轉相除法都是求兩數最小公倍數的演算法。 所以,歐幾里得演算法(輾轉相除法)的重要程式碼如下: int gcd(int x,int y){ if(y==0) return x; else return gcd(y

UVA - 12169 -擴充套件演算法

#include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> #define ll long long #define rep(i,j,k) for(int i=j;

演算法(輾轉相除法)求最大公約數程式碼

    求解最大公約數依據如下定理:gcd(a,b) = gcd(b,a mod b) (不妨設a>b 且r=a mod b ,r不為0); 兩個整數的最大公約數等於其中較小的那個數和兩數相除餘數的最大公約數。 程式碼: 非遞迴演算法: int gcd(in

演算法複習——擴充套件演算法(擴充套件,逆元,整除)

①歐幾里得演算法 就是求gcd的有趣的輾轉相除法,不再贅述啦0v0 程式碼: int gcd(int a,int b) { if(b==0) return a; else return gcd(b,a%b); } ②擴充套件歐幾里得演算法 需要解決這樣的問題:兩個非0整數a,b

奧賽-演算法-最大公約數

Greatest Common Divisor(GCD) 歐幾里得演算法據說是最早的演算法,用於計算最大公約數,也是數論的基礎演算法之一。   1.歐幾里德演算法的思想: 歐幾里德演算法的思想基於輾轉相除法的原理,輾轉相除法是歐幾里德演算法的核心思想,歐幾里德演算法說白了其實就是輾轉相除法的

實驗二 擴充套件演算法c++程式碼

#include<iostream> #include<stdio.h> using namespace std; int x,y,q; void extend_Eulid(int a,int b) { if(b==0) { x=1; y=0; q=a; }

【擴充套件演算法】輾轉相除法

其計算原理依賴於下面的定理: 定理:兩個整數的最大公約數等於其中較小的那個數和兩數相除餘數的最大公約數。最大公約數(Greatest Common Divisor)縮寫為GCD。 /* 歐幾里德演算法:輾轉求餘 原理: gcd(a,b)=gcd(b,a mod b) 當b為0時,兩數的最

拓展演算法模板

程式碼示例:求出ax + by = c的所有解 #include<cstdio> int exgcd(int a,int b,int& x,int& y){ if(b == 0){ x = 1,y = 0; return a; } int d = e

擴充套件演算法+獲取特殊的解

通過擴充套件歐幾里得演算法獲取x或者y的最小整數解 template<class T> void exgcd(T a,T b,T &d,T &x,T &y){ if(!b) {d=a;x=1;y=0;} else {exgcd(b,a%b,d,y,x

POJ-1061-青蛙的約會 (擴充套件演算法

原題連結: http://poj.org/problem?id=1061 兩隻青蛙在網上相識了,它們聊得很開心,於是覺得很有必要見一面。它們很高興地發現它們住在同一條緯度線上,於是它們約定各自朝西跳,直到碰面為止。可是它們出發之前忘記了一件很重要的事情,既沒有問清楚對方的特徵,也沒有約定

C語言輾轉相除/相減法(演算法)求最大公約數和最小公倍數

#include <stdio.h> #include <stdlib.h> //題目:輸入兩個正整數m和n,求其最大公約數和最小公倍數。 //採用任何兩種演算法來完成上述題目,並比較2種演算法的時間複雜度和空間複雜度。 int main() { int

資料結構與演算法-->使用演算法求最大公約數

package com.xiaojihua.datastructure; public class Gcd { public static void main(String[] args) { // TODO Auto-generated method stub long

HDU-2669-Romantic (擴充套件演算法

原題連結: http://acm.hdu.edu.cn/showproblem.php?pid=2669 The Sky is Sprite. The Birds is Fly in the Sky. The Wind is Wonderful. Blew Throw the Trees

POJ-2142-The Balance (擴充套件演算法

原題連結: Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspiri

擴充套件演算法--C語言程式

前提 擴充套件歐幾里得演算法是在歐幾里得演算法(輾轉相除法)的前提下,對已知數求係數的一種演算法。擴充套件歐幾里得演算法的公式推導我就不廢話了,基本上就是第一次推導的係數等於第二次推導的係數之間的聯絡,很多文章都引用百度對擴充套件歐幾里得的定義,但是講的不是很