HOG特徵、LBP特徵、Harr特徵
(一)HOG特徵
1、HOG特徵:
方向梯度直方圖(Histogram of Oriented Gradient, HOG)特徵是一種在計算機視覺和影象處理中用來進行物體檢測的特徵描述子。它通過計算和統計影象區域性區域的梯度方向直方圖來構成特徵。Hog特徵結合SVM分類器已經被廣泛應用於影象識別中,尤其在行人檢測中獲得了極大的成功。需要提醒的是,HOG+SVM進行行人檢測的方法是法國研究人員Dalal在2005的CVPR上提出的,而如今雖然有很多行人檢測演算法不斷提出,但基本都是以HOG+SVM的思路為主。
(1)主要思想:
在一副影象中,區域性目標的表象和形狀(appearance and shape)能夠被梯度或邊緣的方向密度分佈很好地描述。(本質:梯度的統計資訊,而梯度主要存在於邊緣的地方)。
(2)具體的實現方法是:
首先將影象分成小的連通區域,我們把它叫細胞單元。然後採集細胞單元中各畫素點的梯度的或邊緣的方向直方圖。最後把這些直方圖組合起來就可以構成特徵描述器。
(3)提高效能:
把這些區域性直方圖在影象的更大的範圍內(我們把它叫區間或block)進行對比度歸一化(contrast-normalized),所採用的方法是:先計算各直方圖在這個區間(block)中的密度,然後根據這個密度對區間中的各個細胞單元做歸一化。通過這個歸一化後,能對光照變化和陰影獲得更好的效果。
(4)優點:
與其他的特徵描述方法相比,HOG有很多優點。首先,由於HOG是在影象的區域性方格單元上操作,所以它對影象幾何的和光學的形變都能保持很好的不變性,這兩種形變只會出現在更大的空間領域上。其次,在粗的空域抽樣、精細的方向抽樣以及較強的區域性光學歸一化等條件下,只要行人大體上能夠保持直立的姿勢,可以容許行人有一些細微的肢體動作,這些細微的動作可以被忽略而不影響檢測效果。因此HOG特徵是特別適合於做影象中的人體檢測的。
2、HOG特徵提取演算法的實現過程:
大概過程:
HOG特徵提取方法就是將一個image(你要檢測的目標或者掃描視窗):
1)灰度化(將影象看做一個x,y,z(灰度)的三維影象);
2)採用Gamma校正法對輸入影象進行顏色空間的標準化(歸一化);目的是調節影象的對比度,降低影象區域性的陰影和光照變化所造成的影響,同時可以抑制噪音的干擾;
3)計算影象每個畫素的梯度(包括大小和方向);主要是為了捕獲輪廓資訊,同時進一步弱化光照的干擾。
4)將影象劃分成小cells(例如6*6畫素/cell);
5)統計每個cell的梯度直方圖(不同梯度的個數),即可形成每個cell的descriptor;
6)將每幾個cell組成一個block(例如3*3個cell/block),一個block內所有cell的特徵descriptor串聯起來便得到該block的HOG特徵descriptor。
7)將影象image內的所有block的HOG特徵descriptor串聯起來就可以得到該image(你要檢測的目標)的HOG特徵descriptor了。這個就是最終的可供分類使用的特徵向量了。
具體每一步的詳細過程如下:
(1)標準化gamma空間和顏色空間
為了減少光照因素的影響,首先需要將整個影象進行規範化(歸一化)。在影象的紋理強度中,區域性的表層曝光貢獻的比重較大,所以,這種壓縮處理能夠有效地降低影象區域性的陰影和光照變化。因為顏色資訊作用不大,通常先轉化為灰度圖;
Gamma壓縮公式:
比如可以取Gamma=1/2;
(2)計算影象梯度
計算影象橫座標和縱座標方向的梯度,並據此計算每個畫素位置的梯度方向值;求導操作不僅能夠捕獲輪廓,人影和一些紋理資訊,還能進一步弱化光照的影響。
影象中畫素點(x,y)的梯度為:
最常用的方法是:首先用[-1,0,1]梯度運算元對原影象做卷積運算,得到x方向(水平方向,以向右為正方向)的梯度分量gradscalx,然後用[1,0,-1]T梯度運算元對原影象做卷積運算,得到y方向(豎直方向,以向上為正方向)的梯度分量gradscaly。然後再用以上公式計算該畫素點的梯度大小和方向。
(3)為每個細胞單元構建梯度方向直方圖
第三步的目的是為區域性影象區域提供一個編碼,同時能夠保持對影象中人體物件的姿勢和外觀的弱敏感性。
我們將影象分成若干個“單元格cell”,例如每個cell為6*6個畫素。假設我們採用9個bin的直方圖來統計這6*6個畫素的梯度資訊。也就是將cell的梯度方向360度分成9個方向塊,如圖所示:例如:如果這個畫素的梯度方向是20-40度,直方圖第2個bin的計數就加一,這樣,對cell內每個畫素用梯度方向在直方圖中進行加權投影(對映到固定的角度範圍),就可以得到這個cell的梯度方向直方圖了,就是該cell對應的9維特徵向量(因為有9個bin)。
畫素梯度方向用到了,那麼梯度大小呢?梯度大小就是作為投影的權值的。例如說:這個畫素的梯度方向是20-40度,然後它的梯度大小是2(假設啊),那麼直方圖第2個bin的計數就不是加一了,而是加二(假設啊)。
細胞單元可以是矩形的(rectangular),也可以是星形的(radial)。
(4)把細胞單元組合成大的塊(block),塊內歸一化梯度直方圖
由於區域性光照的變化以及前景-背景對比度的變化,使得梯度強度的變化範圍非常大。這就需要對梯度強度做歸一化。歸一化能夠進一步地對光照、陰影和邊緣進行壓縮。
作者採取的辦法是:把各個細胞單元組合成大的、空間上連通的區間(blocks)。這樣,一個block內所有cell的特徵向量串聯起來便得到該block的HOG特徵。這些區間是互有重疊的,這就意味著:每一個單元格的特徵會以不同的結果多次出現在最後的特徵向量中。我們將歸一化之後的塊描述符(向量)就稱之為HOG描述符。
區間有兩個主要的幾何形狀——矩形區間(R-HOG)和環形區間(C-HOG)。R-HOG區間大體上是一些方形的格子,它可以有三個引數來表徵:每個區間中細胞單元的數目、每個細胞單元中畫素點的數目、每個細胞的直方圖通道數目。
例如:行人檢測的最佳引數設定是:3×3細胞/區間、6×6畫素/細胞、9個直方圖通道。則一塊的特徵數為:3*3*9;
(5)收集HOG特徵
最後一步就是將檢測視窗中所有重疊的塊進行HOG特徵的收集,並將它們結合成最終的特徵向量供分類使用。
(6)那麼一個影象的HOG特徵維數是多少呢?
順便做個總結:Dalal提出的Hog特徵提取的過程:把樣本影象分割為若干個畫素的單元(cell),把梯度方向平均劃分為9個區間(bin),在每個單元裡面對所有畫素的梯度方向在各個方向區間進行直方圖統計,得到一個9維的特徵向量,每相鄰的4個單元構成一個塊(block),把一個塊內的特徵向量聯起來得到36維的特徵向量,用塊對樣本影象進行掃描,掃描步長為一個單元。最後將所有塊的特徵串聯起來,就得到了人體的特徵。例如,對於64*128的影象而言,每16*16的畫素組成一個cell,每2*2個cell組成一個塊,因為每個cell有9個特徵,所以每個塊內有4*9=36個特徵,以8個畫素為步長,那麼,水平方向將有7個掃描視窗,垂直方向將有15個掃描視窗。也就是說,64*128的圖片,總共有36*7*15=3780個特徵。
(二)LBP特徵
LBP(Local Binary Pattern,區域性二值模式)是一種用來描述影象區域性紋理特徵的運算元;它具有旋轉不變性和灰度不變性等顯著的優點。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用於紋理特徵提取。而且,提取的特徵是影象的區域性的紋理特徵;
1、LBP特徵的描述
原始的LBP運算元定義為在3*3的視窗內,以視窗中心畫素為閾值,將相鄰的8個畫素的灰度值與其進行比較,若周圍畫素值大於中心畫素值,則該畫素點的位置被標記為1,否則為0。這樣,3*3鄰域內的8個點經比較可產生8位二進位制數(通常轉換為十進位制數即LBP碼,共256種),即得到該視窗中心畫素點的LBP值,並用這個值來反映該區域的紋理資訊。如下圖所示:
LBP的改進版本:
原始的LBP提出後,研究人員不斷對其提出了各種改進和優化。
(1)圓形LBP運算元:
基本的 LBP運算元的最大缺陷在於它只覆蓋了一個固定半徑範圍內的小區域,這顯然不能滿足不同尺寸和頻率紋理的需要。為了適應不同尺度的紋理特徵,並達到灰度和旋轉不變性的要求,Ojala等對 LBP 運算元進行了改進,將 3×3鄰域擴充套件到任意鄰域,並用圓形鄰域代替了正方形鄰域,改進後的 LBP 運算元允許在半徑為 R 的圓形鄰域內有任意多個畫素點。從而得到了諸如半徑為R的圓形區域內含有P個取樣點的LBP運算元;
(2)LBP旋轉不變模式
從 LBP 的定義可以看出,LBP 運算元是灰度不變的,但卻不是旋轉不變的。影象的旋轉就會得到不同的 LBP值。
Maenpaa等人又將 LBP運算元進行了擴充套件,提出了具有旋轉不變性的 LBP 運算元,即不斷旋轉圓形鄰域得到一系列初始定義的 LBP值,取其最小值作為該鄰域的 LBP 值。
圖 2.5 給出了求取旋轉不變的 LBP 的過程示意圖,圖中運算元下方的數字表示該運算元對應的 LBP值,圖中所示的 8 種 LBP模式,經過旋轉不變的處理,最終得到的具有旋轉不變性的 LBP值為 15。也就是說,圖中的 8種 LBP 模式對應的旋轉不變的 LBP模式都是00001111。
(3)LBP等價模式
一個LBP運算元可以產生不同的二進位制模式,對於半徑為R的圓形區域內含有P個取樣點的LBP運算元將會產生P2種模式。很顯然,隨著鄰域集內取樣點數的增加,二進位制模式的種類是急劇增加的。例如:5×5鄰域內20個取樣點,有220=1,048,576種二進位制模式。如此多的二值模式無論對於紋理的提取還是對於紋理的識別、分類及資訊的存取都是不利的。同時,過多的模式種類對於紋理的表達是不利的。例如,將LBP運算元用於紋理分類或人臉識別時,常採用LBP模式的統計直方圖來表達影象的資訊,而較多的模式種類將使得資料量過大,且直方圖過於稀疏。因此,需要對原始的LBP模式進行降維,使得資料量減少的情況下能最好的代表影象的資訊。
為了解決二進位制模式過多的問題,提高統計性,Ojala提出了採用一種“等價模式”(Uniform Pattern)來對LBP運算元的模式種類進行降維。Ojala等認為,在實際影象中,絕大多數LBP模式最多隻包含兩次從1到0或從0到1的跳變。因此,Ojala將“等價模式”定義為:當某個LBP所對應的迴圈二進位制數從0到1或從1到0最多有兩次跳變時,該LBP所對應的二進位制就稱為一個等價模式類。如00000000(0次跳變),00000111(只含一次從0到1的跳變),10001111(先由1跳到0,再由0跳到1,共兩次跳變)都是等價模式類。除等價模式類以外的模式都歸為另一類,稱為混合模式類,例如10010111(共四次跳變)(這是我的個人理解,不知道對不對)。
通過這樣的改進,二進位制模式的種類大大減少,而不會丟失任何資訊。模式數量由原來的2P種減少為 P ( P-1)+2種,其中P表示鄰域集內的取樣點數。對於3×3鄰域內8個取樣點來說,二進位制模式由原始的256種減少為58種,這使得特徵向量的維數更少,並且可以減少高頻噪聲帶來的影響。
2、LBP特徵用於檢測的原理
顯而易見的是,上述提取的LBP運算元在每個畫素點都可以得到一個LBP“編碼”,那麼,對一幅影象(記錄的是每個畫素點的灰度值)提取其原始的LBP運算元之後,得到的原始LBP特徵依然是“一幅圖片”(記錄的是每個畫素點的LBP值)。
LBP的應用中,如紋理分類、人臉分析等,一般都不將LBP圖譜作為特徵向量用於分類識別,而是採用LBP特徵譜的統計直方圖作為特徵向量用於分類識別。
因為,從上面的分析我們可以看出,這個“特徵”跟位置資訊是緊密相關的。直接對兩幅圖片提取這種“特徵”,並進行判別分析的話,會因為“位置沒有對準”而產生很大的誤差。後來,研究人員發現,可以將一幅圖片劃分為若干的子區域,對每個子區域內的每個畫素點都提取LBP特徵,然後,在每個子區域內建立LBP特徵的統計直方圖。如此一來,每個子區域,就可以用一個統計直方圖來進行描述;整個圖片就由若干個統計直方圖組成;
例如:一幅100*100畫素大小的圖片,劃分為10*10=100個子區域(可以通過多種方式來劃分區域),每個子區域的大小為10*10畫素;在每個子區域內的每個畫素點,提取其LBP特徵,然後,建立統計直方圖;這樣,這幅圖片就有10*10個子區域,也就有了10*10個統計直方圖,利用這10*10個統計直方圖,就可以描述這幅圖片了。之後,我們利用各種相似性度量函式,就可以判斷兩幅影象之間的相似性了;
3、對LBP特徵向量進行提取的步驟
(1)首先將檢測視窗劃分為16×16的小區域(cell);
(2)對於每個cell中的一個畫素,將相鄰的8個畫素的灰度值與其進行比較,若周圍畫素值大於中心畫素值,則該畫素點的位置被標記為1,否則為0。這樣,3*3鄰域內的8個點經比較可產生8位二進位制數,即得到該視窗中心畫素點的LBP值;
(3)然後計算每個cell的直方圖,即每個數字(假定是十進位制數LBP值)出現的頻率;然後對該直方圖進行歸一化處理。
(4)最後將得到的每個cell的統計直方圖進行連線成為一個特徵向量,也就是整幅圖的LBP紋理特徵向量;
然後便可利用SVM或者其他機器學習演算法進行分類了。
1、Haar-like特徵
Haar-like特徵最早是由Papageorgiou等應用於人臉表示,Viola和Jones在此基礎上,使用3種類型4種形式的特徵。
Haar特徵分為三類:邊緣特徵、線性特徵、中心特徵和對角線特徵,組合成特徵模板。特徵模板內有白色和黑色兩種矩形,並定義該模板的特徵值為白色矩形畫素和減去黑色矩形畫素和。Haar特徵值反映了影象的灰度變化情況。例如:臉部的一些特徵能由矩形特徵簡單的描述,如:眼睛要比臉頰顏色要深,鼻樑兩側比鼻樑顏色要深,嘴巴比周圍顏色要深等。但矩形特徵只對一些簡單的圖形結構,如邊緣、線段較敏感,所以只能描述特定走向(水平、垂直、對角)的結構。
對於圖中的A, B和D這類特徵,特徵數值計算公式為:v=Sum白-Sum黑,而對於C來說,計算公式如下:v=Sum白-2*Sum黑;之所以將黑色區域畫素和乘以2,是為了使兩種矩形區域中畫素數目一致。
通過改變特徵模板的大小和位置,可在影象子視窗中窮舉出大量的特徵。上圖的特徵模板稱為“特徵原型”;特徵原型在影象子視窗中擴充套件(平移伸縮)得到的特徵稱為“矩形特徵”;矩形特徵的值稱為“特徵值”。
矩形特徵可位於影象任意位置,大小也可以任意改變,所以矩形特徵值是矩形模版類別、矩形位置和矩形大小這三個因素的函式。故類別、大小和位置的變化,使得很小的檢測視窗含有非常多的矩形特徵,如:在24*24畫素大小的檢測視窗內矩形特徵數量可以達到16萬個。這樣就有兩個問題需要解決了:(1)如何快速計算那麼多的特徵?—積分圖大顯神通;(2)哪些矩形特徵才是對分類器分類最有效的?—如通過AdaBoost演算法來訓練(這一塊這裡不討論,具體見http://blog.csdn.net/zouxy09/article/details/7922923)
2、Haar-like特徵的計算—積分圖
積分圖就是隻遍歷一次影象就可以求出影象中所有區域畫素和的快速演算法,大大的提高了影象特徵值計算的效率。
積分圖主要的思想是將影象從起點開始到各個點所形成的矩形區域畫素之和作為一個數組的元素儲存在記憶體中,當要計算某個區域的畫素和時可以直接索引陣列的元素,不用重新計算這個區域的畫素和,從而加快了計算(這有個相應的稱呼,叫做動態規劃演算法)。積分圖能夠在多種尺度下,使用相同的時間(常數時間)來計算不同的特徵,因此大大提高了檢測速度。
我們來看看它是怎麼做到的。
積分圖是一種能夠描述全域性資訊的矩陣表示方法。積分圖的構造方式是位置(i,j)處的值ii(i,j)是原影象(i,j)左上角方向所有畫素的和:
積分圖構建演算法:
1)用s(i,j)表示行方向的累加和,初始化s(i,-1)=0;
2)用ii(i,j)表示一個積分影象,初始化ii(-1,i)=0;
3)逐行掃描影象,遞迴計算每個畫素(i,j)行方向的累加和s(i,j)和積分影象ii(i,j)的值
s(i,j)=s(i,j-1)+f(i,j)
ii(i,j)=ii(i-1,j)+s(i,j)
4)掃描影象一遍,當到達影象右下角畫素時,積分影象ii就構造好了。
積分圖構造好之後,影象中任何矩陣區域的畫素累加和都可以通過簡單運算得到如圖所示。
設D的四個頂點分別為α、β、γ、δ,則D的畫素和可以表示為
Dsum = ii( α )+ii( β)-(ii( γ)+ii( δ ));
而Haar-like特徵值無非就是兩個矩陣畫素和的差,同樣可以在常數時間內完成。所以矩形特徵的特徵值計算,只與此特徵矩形的端點的積分圖有關,所以不管此特徵矩形的尺度變換如何,特徵值的計算所消耗的時間都是常量。這樣只要遍歷影象一次,就可以求得所有子視窗的特徵值。
3、Haar-like矩形特徵拓展
Lienhart R.等對Haar-like矩形特徵庫作了進一步擴充套件,加入了旋轉45。角的矩形特徵。擴充套件後的特徵大致分為4種類型:邊緣特徵、線特徵環、中心環繞特徵和對角線特徵:
在特徵值的計算過程中,黑色區域的權值為負值,白色區域的權值為正值。而且權值與矩形面積成反比(使兩種矩形區域中畫素數目一致);
豎直矩陣特徵值計算:
對於豎直矩陣,與上面2處說的一樣。
45°旋角的矩形特徵計算:
對於45°旋角的矩形,我們定義RSAT(x,y)為點(x,y)左上角45°區域和左下角45°區域的畫素和。
用公式可以表示為:
為了節約時間,減少重複計算,可按如下遞推公式計算:
而計算矩陣特徵的特徵值,是位於十字行矩形RSAT(x,y)之差。可參考下圖:
相關推薦
Hog,SIFT以及LBP這三種特徵的不同
作者:盛淮南 連結:https://www.zhihu.com/question/45833619/answer/223930439 來源:知乎 著作權歸作者所有。商業轉載請聯絡作者獲得授權,非商業轉載請註明出處。 SIFT、HOG、LBP,這三者都屬於區域
HOG特徵、LBP特徵、Harr特徵
(一)HOG特徵 1、HOG特徵: 方向梯度直方圖(Histogram of Oriented Gradient, HOG)特徵是一種在計算機視覺和影象處理中用來進行物體檢測的特徵描述子。它通過計算和統計影象區域性區域的梯度方向直方圖來構成特徵。Hog特徵結合SVM
學習筆記之——HOG、LBP與Haar特徵(未完待續)
本博文為HOG、LBP與Haar運算元的學習筆記。 方向梯度直方圖HOG 主要參考博文如下: https://blog.csdn.net/wjb820728252/article/details/78395092(這篇博文翻譯水平真的太爛了,可以參考裡面給的原連結)
行人檢測全域性特徵中的HOG、LBP、Haar特徵整理
原文地址:http://dataunion.org/20584.html (一)HOG特徵 1、HOG特徵: 方向梯度直方圖(Histogram of Oriented Gradient, HOG)特徵是一種在計算機視覺和影象處理中用來進行物體檢測的特徵描述子。它通
影象特徵提取三大法寶:HOG特徵、LBP特徵、Haar-like特徵
轉自:https://blog.csdn.net/q123456789098/article/details/52748918(一)HOG特徵1、HOG特徵:方向梯度直方圖(Histogram of Oriented Gradient, HOG)特徵是一種在計算機視覺和影象處
影象特徵檢測描述(一):SIFT、SURF、ORB、HOG、LBP特徵的原理概述及OpenCV程式碼實現
什麼叫特徵檢測?就是檢測影象中目標的特徵唄,所謂特徵,不管你怎麼旋轉目標,離目標遠近,它的特徵都應不變才對,這兩個特性稱為叫旋轉不變性和尺度不變性。當然還有其它特徵,如光照不一樣,也不應該變化嘛,只是旋轉不變性和尺度不變性是最基本的兩個要求。 對特徵的描述有很多種方法和運算
關於影象目標檢測的HOG\LBP\Harr特徵的部落格
不知道部落格主人讓不讓轉載呢,所以這裡只給出部落格的連結。以後用得上。 目標檢測的影象特徵提取之(一)HOG特徵 http://blog.csdn.net/zouxy09/article/details/7929348 目標檢測的影象特徵提取之(二)LBP特徵
OpenCV開發筆記(五十五):紅胖子8分鐘帶你深入瞭解Haar、LBP特徵以及級聯分類器識別過程(圖文並茂+淺顯易懂+程式原始碼)
若該文為原創文章,未經允許不得轉載原博主部落格地址:https://blog.csdn.net/qq21497936原博主部落格導航:https://blog.csdn.net/qq21497936/article/details/102478062本文章部落格地址:https://blog.csdn.net
詳解Memcached、Redis等快取的特徵、原理、應用
詳解Memcached、Redis等快取的特徵、原理、應用 http://youzhixueyuan.com/explain-the-principles-of-memcached-and-redis.html http://youzhixueyuan.com/advanced-archit
無偏估計、特徵值/特徵向量、無偏估計、卷積、行列式
為馬同學網站點贊,直觀、通俗易懂:https://www.matongxue.com/ 1、如何理解矩陣特徵值和特徵向量? 馬同學高等數學 如何理解矩陣特徵值和特徵向量? 2、如何理解無偏估計量? 馬同學高等數學 如何理解無偏估計量? 3、如何通俗地理解卷積
客戶逾期貸款預測[8] - 特徵選擇(iv值、隨機森林)
任務 分別用IV值和隨機森林挑選特徵,再構建模型,進行模型評估 1 利用iv值挑選特徵 這次暫時先用學長計算好的iv值挑選特徵,之後再嘗試自己計算iv值。選擇iv
python特徵資料型別(列表、元祖、字典、集合)
(一)、主要內容 1.1、列表 1.2、元祖 1.3、字典 1.4、集合 列表 、字典、元祖、集合 (二)、列表 2.1、Python 提供了列表資料型別來儲存由多個值組成的序列。在列表中,只可以是任何型別,稱為元素或項。Pytho
面向物件程式設計的 3 個主要特徵:封裝性、繼承性、多型性
封裝性:封裝是一種資訊隱蔽技術,它體現於類的說明,是物件的重要特性。封裝使資料和加工該資料的方法(函式)封裝為一個整體,以實現獨立性很強的模組,使得使用者只能見到物件的外特性(物件能接受哪些訊息,具有哪些處理能力),而物件的內特性(儲存內部狀態的私有資料和實現加工能力的演算法
影象特徵提取三大法寶:HOG特徵,LBP特徵,Haar特徵
(一)HOG特徵 1、HOG特徵: 方向梯度直方圖(Histogram of Oriented Gradient, HOG)特徵是一種在計算機視覺和影象處理中用來進行物體檢測的特徵描述子。它通過計算和統計影象區域性區域的梯度方向直方圖來構成特徵。Hog特徵結合SVM分
【scikit-learn】交叉驗證及其用於引數選擇、模型選擇、特徵選擇的例子
[0.95999999999999996, 0.95333333333333337, 0.96666666666666656, 0.96666666666666656, 0.96666666666666679, 0.96666666666666679, 0.96666666666666679, 0.9666
IDEA的安裝、註冊碼、建立專案、配置環境、配置Struts2模組、Debug使用、十大特徵,Eclipse及IntelliJ IDEA的xml檔案的建立
最近同學,很多都在使用IntelliJ IDEA編輯器,我也跟著換個工具來,但將IDEA安裝(在最後部分,有相關連結,可以直接點選藍色,直接跳轉)後,我還是繼續使用JDK1.7,雖然聽他們說自己都改用JDK1.8,可是我百度,也見有人使用JDK1.7加上Tomcat7.0或者8.0,還有的是我安
學習理論、模型選擇、特徵選擇——斯坦福CS229機器學習個人總結(四)
這一份總結裡的主要內容不是演算法,是關於如何對偏差和方差進行權衡、如何選擇模型、如何選擇特徵的內容,通過這些可以在實際中對問題進行更好地選擇與修改模型。 1、學習理論(Learning theory) 1.1、偏差/方差(Bias/variance)
【OpenCV學習筆記】三十七、特徵檢測與匹配(二)——SIFT特徵點匹配
特徵檢測與匹配(二)——SIFT特徵點匹配 1.SIFT特徵點提取 2.繪製特徵點 3.特徵點描述符(特徵向量)提取 4.使用暴力匹配器進行暴力匹配 5.對匹配結果進行篩選(依據DMatch結構體中的float型別變數distance進行篩選) 6.繪製匹配結果 先上ppt
程式碼:小波包分解與重構、小波包能量特徵提取1
1、小波變換的理解 傅立葉變換——短時傅立葉變換——小波變換。 參考文獻:以下兩篇參考資料講述得十分清楚,有助於理解小波變換。 但具體的數學角度闡述,請參考其他資料。 (1)知乎專欄:形象易懂講解演算法I——小波變換 https://z
面向物件的三個基本特徵是:封裝、繼承、多型。(詳解示例)
什麼是封裝: 封裝是實現面向物件程式設計的第一步,封裝就是將資料或函式等集合在一個個的單元中(我們稱它為類)。被封裝的物件通常被稱為抽象資料型別。也可以稱作抽象,將現實中的資料抽象成為資料型別 封裝的意義: 封裝的意義在於保護或者防止程式碼(資料)被我們無意中破壞。