Cartographer原始碼閱讀(2):Node和MapBuilder物件
上文提到特別注意map_builder_bridge_.AddTrajectory(x,x),檢視其中的程式碼。兩點:
首先是map_builder_.AddTrajectoryBuilder(...),呼叫了map_builder_物件的方法。其次是sensor_bridges_鍵值對的賦值。
int MapBuilderBridge::AddTrajectory(const std::unordered_set<std::string>& expected_sensor_ids, const TrajectoryOptions& trajectory_options) { const int trajectory_id = map_builder_.AddTrajectoryBuilder(expected_sensor_ids, trajectory_options.trajectory_builder_options, ::std::bind(&MapBuilderBridge::OnLocalSlamResult, this, ::std::placeholders::_1, ::std::placeholders::_2, ::std::placeholders::_3, ::std::placeholders::_4, ::std::placeholders::_5)); LOG(INFO) << "Added trajectory with ID '" << trajectory_id << "'."; // Make sure there is no trajectory with 'trajectory_id' yet. CHECK_EQ(sensor_bridges_.count(trajectory_id), 0); sensor_bridges_[trajectory_id] = cartographer::common::make_unique<SensorBridge>( trajectory_options.num_subdivisions_per_laser_scan, trajectory_options.tracking_frame, node_options_.lookup_transform_timeout_sec, tf_buffer_, map_builder_.GetTrajectoryBuilder(trajectory_id)); auto emplace_result = trajectory_options_.emplace(trajectory_id, trajectory_options); CHECK(emplace_result.second == true); return trajectory_id; }
其中map_builder_.AddTrajectoryBuilder(...)是Cartographer專案中的程式碼了。
int MapBuilder::AddTrajectoryBuilder( const std::unordered_set<std::string>& expected_sensor_ids, const proto::TrajectoryBuilderOptions& trajectory_options, LocalSlamResultCallback local_slam_result_callback) { const int trajectory_id = trajectory_builders_.size();//生成trajectory_id if (options_.use_trajectory_builder_3d()) { CHECK(trajectory_options.has_trajectory_builder_3d_options()); trajectory_builders_.push_back(common::make_unique<CollatedTrajectoryBuilder>( &sensor_collator_, trajectory_id, expected_sensor_ids, common::make_unique<mapping::GlobalTrajectoryBuilder< mapping_3d::LocalTrajectoryBuilder, mapping_3d::proto::LocalTrajectoryBuilderOptions, mapping_3d::PoseGraph>>( trajectory_options.trajectory_builder_3d_options(), trajectory_id, pose_graph_3d_.get(), local_slam_result_callback)));//注意此處的push_back()方法 } else { CHECK(trajectory_options.has_trajectory_builder_2d_options()); trajectory_builders_.push_back(common::make_unique<CollatedTrajectoryBuilder>( &sensor_collator_, trajectory_id, expected_sensor_ids, common::make_unique<mapping::GlobalTrajectoryBuilder< mapping_2d::LocalTrajectoryBuilder, mapping_2d::proto::LocalTrajectoryBuilderOptions, mapping_2d::PoseGraph>>( trajectory_options.trajectory_builder_2d_options(), trajectory_id, pose_graph_2d_.get(), local_slam_result_callback)));//注意此處的push_back()方法 } if (trajectory_options.pure_localization()) { constexpr int kSubmapsToKeep = 3; pose_graph_->AddTrimmer(common::make_unique<PureLocalizationTrimmer>(trajectory_id, kSubmapsToKeep)); } if (trajectory_options.has_initial_trajectory_pose()) { const auto& initial_trajectory_pose = trajectory_options.initial_trajectory_pose(); pose_graph_->SetInitialTrajectoryPose(trajectory_id, initial_trajectory_pose.to_trajectory_id(), transform::ToRigid3(initial_trajectory_pose.relative_pose()), common::FromUniversal(initial_trajectory_pose.timestamp())); } return trajectory_id; }
注意,trajectory_builders_是根據trajectory_id新增的。以後呼叫的時候根據trajectory_id呼叫。
2D/3D區分:同時可以看到,這裡對2D和3D情況作了區分,根據options_.use_trajectory_builder_3d()確定使用的型別。
在ROS的主迴圈執行過程中,會不斷處理感測器傳入的資料。
以IMU資料為例,auto sensor_bridge_ptr = map_builder_bridge_.sensor_bridge(trajectory_id),根據trajectory_id獲取sensor_bridge_ptr。注意這裡因為是訂閱的其它ROS主題(Topic),所以sensor_id引數是從其他主題傳入的。(即當前程式內部有一套主題名稱的字串,訂閱了外部主題也有一套名稱字串表示。這樣兩者通過同樣的名稱字串建立了關係)
void Node::HandleImuMessage(const int trajectory_id, const std::string& sensor_id, const sensor_msgs::Imu::ConstPtr& msg) { carto::common::MutexLocker lock(&mutex_); if (!sensor_samplers_.at(trajectory_id).imu_sampler.Pulse()) { return; } auto sensor_bridge_ptr = map_builder_bridge_.sensor_bridge(trajectory_id); auto imu_data_ptr = sensor_bridge_ptr->ToImuData(msg); if (imu_data_ptr != nullptr) { extrapolators_.at(trajectory_id).AddImuData(*imu_data_ptr); } sensor_bridge_ptr->HandleImuMessage(sensor_id, msg); }
最後呼叫了sensor_bridge_ptr->HandleImuMessage(sensor_id, msg);的程式碼。這裡又通過trajectory_builder_呼叫了AddSensorData方法,由於之前做為引數傳入的是CollatedTrajectoryBuilder,所以實際呼叫的是CollatedTrajectoryBuilder的AddSensorData方法。
void SensorBridge::HandleImuMessage(const std::string& sensor_id, const sensor_msgs::Imu::ConstPtr& msg) { std::unique_ptr<::cartographer::sensor::ImuData> imu_data = ToImuData(msg); if (imu_data != nullptr) { trajectory_builder_->AddSensorData( sensor_id, cartographer::sensor::ImuData{imu_data->time, imu_data->linear_acceleration, imu_data->angular_velocity}); } }
SensorBridge類實現程式碼,訊息轉換函式檢視msg_conversion.cc檔案:
1 SensorBridge::SensorBridge( 2 const int num_subdivisions_per_laser_scan, 3 const std::string& tracking_frame, 4 const double lookup_transform_timeout_sec, tf2_ros::Buffer* const tf_buffer, 5 carto::mapping::TrajectoryBuilderInterface* const trajectory_builder) 6 : num_subdivisions_per_laser_scan_(num_subdivisions_per_laser_scan), 7 tf_bridge_(tracking_frame, lookup_transform_timeout_sec, tf_buffer), 8 trajectory_builder_(trajectory_builder) {} 9 10 std::unique_ptr<::cartographer::sensor::OdometryData> 11 SensorBridge::ToOdometryData(const nav_msgs::Odometry::ConstPtr& msg) { 12 const carto::common::Time time = FromRos(msg->header.stamp); 13 const auto sensor_to_tracking = tf_bridge_.LookupToTracking( 14 time, CheckNoLeadingSlash(msg->child_frame_id)); 15 if (sensor_to_tracking == nullptr) { 16 return nullptr; 17 } 18 return ::cartographer::common::make_unique< 19 ::cartographer::sensor::OdometryData>( 20 ::cartographer::sensor::OdometryData{ 21 time, ToRigid3d(msg->pose.pose) * sensor_to_tracking->inverse()}); 22 } 23 24 void SensorBridge::HandleOdometryMessage( 25 const std::string& sensor_id, const nav_msgs::Odometry::ConstPtr& msg) { 26 std::unique_ptr<::cartographer::sensor::OdometryData> odometry_data = 27 ToOdometryData(msg); 28 if (odometry_data != nullptr) { 29 trajectory_builder_->AddSensorData( 30 sensor_id, cartographer::sensor::OdometryData{odometry_data->time, 31 odometry_data->pose}); 32 } 33 } 34 35 std::unique_ptr<::cartographer::sensor::ImuData> SensorBridge::ToImuData( 36 const sensor_msgs::Imu::ConstPtr& msg) { 37 CHECK_NE(msg->linear_acceleration_covariance[0], -1) 38 << "Your IMU data claims to not contain linear acceleration measurements " 39 "by setting linear_acceleration_covariance[0] to -1. Cartographer " 40 "requires this data to work. See " 41 "http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html."; 42 CHECK_NE(msg->angular_velocity_covariance[0], -1) 43 << "Your IMU data claims to not contain angular velocity measurements " 44 "by setting angular_velocity_covariance[0] to -1. Cartographer " 45 "requires this data to work. See " 46 "http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html."; 47 48 const carto::common::Time time = FromRos(msg->header.stamp); 49 const auto sensor_to_tracking = tf_bridge_.LookupToTracking( 50 time, CheckNoLeadingSlash(msg->header.frame_id)); 51 if (sensor_to_tracking == nullptr) { 52 return nullptr; 53 } 54 CHECK(sensor_to_tracking->translation().norm() < 1e-5) 55 << "The IMU frame must be colocated with the tracking frame. " 56 "Transforming linear acceleration into the tracking frame will " 57 "otherwise be imprecise."; 58 return ::cartographer::common::make_unique<::cartographer::sensor::ImuData>( 59 ::cartographer::sensor::ImuData{ 60 time, 61 sensor_to_tracking->rotation() * ToEigen(msg->linear_acceleration), 62 sensor_to_tracking->rotation() * ToEigen(msg->angular_velocity)}); 63 } 64 65 void SensorBridge::HandleImuMessage(const std::string& sensor_id, 66 const sensor_msgs::Imu::ConstPtr& msg) { 67 std::unique_ptr<::cartographer::sensor::ImuData> imu_data = ToImuData(msg); 68 if (imu_data != nullptr) { 69 trajectory_builder_->AddSensorData( 70 sensor_id, cartographer::sensor::ImuData{imu_data->time, 71 imu_data->linear_acceleration, 72 imu_data->angular_velocity}); 73 } 74 } 75 76 void SensorBridge::HandleLaserScanMessage( 77 const std::string& sensor_id, const sensor_msgs::LaserScan::ConstPtr& msg) { 78 ::cartographer::sensor::PointCloudWithIntensities point_cloud; 79 ::cartographer::common::Time time; 80 std::tie(point_cloud, time) = ToPointCloudWithIntensities(*msg); 81 HandleLaserScan(sensor_id, time, msg->header.frame_id, point_cloud); 82 } 83 84 void SensorBridge::HandleMultiEchoLaserScanMessage( 85 const std::string& sensor_id, 86 const sensor_msgs::MultiEchoLaserScan::ConstPtr& msg) { 87 ::cartographer::sensor::PointCloudWithIntensities point_cloud; 88 ::cartographer::common::Time time; 89 std::tie(point_cloud, time) = ToPointCloudWithIntensities(*msg); 90 HandleLaserScan(sensor_id, time, msg->header.frame_id, point_cloud); 91 } 92 93 void SensorBridge::HandlePointCloud2Message( 94 const std::string& sensor_id, 95 const sensor_msgs::PointCloud2::ConstPtr& msg) { 96 pcl::PointCloud<pcl::PointXYZ> pcl_point_cloud; 97 pcl::fromROSMsg(*msg, pcl_point_cloud); 98 carto::sensor::TimedPointCloud point_cloud; 99 for (const auto& point : pcl_point_cloud) { 100 point_cloud.emplace_back(point.x, point.y, point.z, 0.f); 101 } 102 HandleRangefinder(sensor_id, FromRos(msg->header.stamp), msg->header.frame_id, 103 point_cloud); 104 } 105 106 const TfBridge& SensorBridge::tf_bridge() const { return tf_bridge_; } 107 108 void SensorBridge::HandleLaserScan( 109 const std::string& sensor_id, const carto::common::Time time, 110 const std::string& frame_id, 111 const carto::sensor::PointCloudWithIntensities& points) { 112 CHECK_LE(points.points.back()[3], 0); 113 // TODO(gaschler): Use per-point time instead of subdivisions. 114 for (int i = 0; i != num_subdivisions_per_laser_scan_; ++i) { 115 const size_t start_index = 116 points.points.size() * i / num_subdivisions_per_laser_scan_; 117 const size_t end_index = 118 points.points.size() * (i + 1) / num_subdivisions_per_laser_scan_; 119 carto::sensor::TimedPointCloud subdivision( 120 points.points.begin() + start_index, points.points.begin() + end_index); 121 if (start_index == end_index) { 122 continue; 123 } 124 const double time_to_subdivision_end = subdivision.back()[3]; 125 // `subdivision_time` is the end of the measurement so sensor::Collator will 126 // send all other sensor data first. 127 const carto::common::Time subdivision_time = 128 time + carto::common::FromSeconds(time_to_subdivision_end); 129 for (auto& point : subdivision) { 130 point[3] -= time_to_subdivision_end; 131 } 132 CHECK_EQ(subdivision.back()[3], 0); 133 HandleRangefinder(sensor_id, subdivision_time, frame_id, subdivision); 134 } 135 } 136 137 void SensorBridge::HandleRangefinder( 138 const std::string& sensor_id, const carto::common::Time time, 139 const std::string& frame_id, const carto::sensor::TimedPointCloud& ranges) { 140 const auto sensor_to_tracking = 141 tf_bridge_.LookupToTracking(time, CheckNoLeadingSlash(frame_id)); 142 if (sensor_to_tracking != nullptr) { 143 trajectory_builder_->AddSensorData( 144 sensor_id, cartographer::sensor::TimedPointCloudData{ 145 time, sensor_to_tracking->translation().cast<float>(), 146 carto::sensor::TransformTimedPointCloud( 147 ranges, sensor_to_tracking->cast<float>())}); 148 } 149 }SensorBridge
1 ToPointCloudWithIntensities(const sensor_msgs::PointCloud2& message) { 2 PointCloudWithIntensities point_cloud; 3 // We check for intensity field here to avoid run-time warnings if we pass in 4 // a PointCloud2 without intensity. 5 if (PointCloud2HasField(message, "intensity")) { 6 pcl::PointCloud<pcl::PointXYZI> pcl_point_cloud; 7 pcl::fromROSMsg(message, pcl_point_cloud); 8 for (const auto& point : pcl_point_cloud) { 9 point_cloud.points.emplace_back(point.x, point.y, point.z, 0.f); 10 point_cloud.intensities.push_back(point.intensity); 11 } 12 } else { 13 pcl::PointCloud<pcl::PointXYZ> pcl_point_cloud; 14 pcl::fromROSMsg(message, pcl_point_cloud); 15 16 // If we don't have an intensity field, just copy XYZ and fill in 17 // 1.0. 18 for (const auto& point : pcl_point_cloud) { 19 point_cloud.points.emplace_back(point.x, point.y, point.z, 0.f); 20 point_cloud.intensities.push_back(1.0); 21 } 22 } 23 return std::make_tuple(point_cloud, FromRos(message.header.stamp)); 24 }msg_conversion.cc
檢視CollatedTrajectoryBuilder的AddSensorData方法,在CollatedTrajectoryBuilder的標頭檔案中,包括4個覆寫的AddSensorData(x,x)方法,方法中通過sensor::MakeDispatchable轉換為Dispatchable<DataType>型別。
void AddSensorData(const std::string& sensor_id, const sensor::TimedPointCloudData& timed_point_cloud_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, timed_point_cloud_data)); } void AddSensorData(const std::string& sensor_id, const sensor::ImuData& imu_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, imu_data)); } void AddSensorData(const std::string& sensor_id, const sensor::OdometryData& odometry_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, odometry_data)); } void AddSensorData(const std::string& sensor_id, const sensor::FixedFramePoseData& fixed_frame_pose_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, fixed_frame_pose_data)); }
最終定位到了sensor_collator_物件的方法。
void CollatedTrajectoryBuilder::AddSensorData( std::unique_ptr<sensor::Data> data) { sensor_collator_->AddSensorData(trajectory_id_, std::move(data)); }
檢視幾個類CollatedTrajectoryBuilder,mapping::GlobalTrajectoryBuilder
CollatedTrajectoryBuilder::CollatedTrajectoryBuilder(sensor::Collator* const sensor_collator, const int trajectory_id, const std::unordered_set<std::string>& expected_sensor_ids, std::unique_ptr<TrajectoryBuilderInterface> wrapped_trajectory_builder) : sensor_collator_(sensor_collator), trajectory_id_(trajectory_id), wrapped_trajectory_builder_(std::move(wrapped_trajectory_builder)), last_logging_time_(std::chrono::steady_clock::now()) { sensor_collator_->AddTrajectory(trajectory_id, expected_sensor_ids, [this](const std::string& sensor_id, std::unique_ptr<sensor::Data> data) {HandleCollatedSensorData(sensor_id, std::move(data));}); }
mapping::GlobalTrajectoryBuilder建構函式
GlobalTrajectoryBuilder(const LocalTrajectoryBuilderOptions& options, const int trajectory_id, PoseGraph* const pose_graph, const LocalSlamResultCallback& local_slam_result_callback) : trajectory_id_(trajectory_id), pose_graph_(pose_graph), local_trajectory_builder_(options), local_slam_result_callback_(local_slam_result_callback) {}
注意這裡的繼承關係:
class CollatedTrajectoryBuilder : public TrajectoryBuilderInterface
class GlobalTrajectoryBuilder : public mapping::TrajectoryBuilderInterface
在mapping_2d和mapping_3d兩個名稱空間下分別存在2個local_trajectory_builder_類,實現了局部的掃描匹配和子圖構建。程式碼在cartographer\cartographer\internal資料夾下。
另外一個重要的Node類變數是extrapolators_,該物件在Node類的處理Odometry和IMU資料時都有用到,作用是位姿推算。在文一種Node::AddTrajectory方法中呼叫了AddExtrapolator(trajectory_id, options);
1 std::map<int, ::cartographer::mapping::PoseExtrapolator> extrapolators_;
void Node::AddExtrapolator(const int trajectory_id, const TrajectoryOptions& options) { constexpr double kExtrapolationEstimationTimeSec = 0.001; // 1 ms CHECK(extrapolators_.count(trajectory_id) == 0); const double gravity_time_constant = node_options_.map_builder_options.use_trajectory_builder_3d() ? options.trajectory_builder_options.trajectory_builder_3d_options() .imu_gravity_time_constant() : options.trajectory_builder_options.trajectory_builder_2d_options() .imu_gravity_time_constant(); extrapolators_.emplace( std::piecewise_construct, std::forward_as_tuple(trajectory_id), std::forward_as_tuple( ::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec), gravity_time_constant)); }
相關推薦
Cartographer原始碼閱讀(2):Node和MapBuilder物件
上文提到特別注意map_builder_bridge_.AddTrajectory(x,x),檢視其中的程式碼。兩點: 首先是map_builder_.AddTrajectoryBuilder(...),呼叫了map_builder_物件的方法。其次是sensor_bridges_鍵值對的賦值。
Cartographer原始碼閱讀(4):Node和MapBuilder物件2
MapBuilder的成員變數sensor::Collator sensor_collator_; 再次閱讀MapBuilder::AddTrajectoryBuilder方法。首先構造了mapping::GlobalTrajectoryBuilder例項,接著作為引數構造了CollatedTraj
Cartographer原始碼閱讀(6):LocalTrajectoryBuilder和PoseExtrapolator
LocalTrajectoryBuilder意思是區域性軌跡的構建,下面的類圖中方法的引數沒有畫進去。 注意其中的三個類:PoseExtrapolator類,RealTimeCorrelativeScanMatcher類和CeresScanMatcher類。 (1)PoseExtrapolator類(
Cartographer原始碼閱讀(7):軌跡推算和位姿推算的原理
其實也就是包括兩個方面的內容:類似於運動模型的位姿估計和掃描匹配,因為需要計算速度,所以時間就有必要了! 1. PoseExtrapolator解決了IMU資料、里程計和位姿資訊進行融合的問題。 該類定義了三個佇列。 1 std::deque<TimedPose> timed_pose_
Cartographer原始碼閱讀(8):imu_tracker
1 /* 2 * Copyright 2016 The Cartographer Authors 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use
Cartographer原始碼閱讀(1):程式入口
1 [email protected]:~$ sudo apt-get install kdevelop 2 [sudo] password for yhexie: 3 Reading package lists... Done 4 Building dependency
Cartographer原始碼閱讀(5):PoseGraph位姿圖
PoseGraph位姿圖 mapping2D::PoseGraph類的註釋: // Implements the loop closure method called Sparse Pose Adjustment (SPA) from// Konolige, Kurt, et al. "E
Cartographer原始碼閱讀(3):程式邏輯結構
Cartographer早期的程式碼在進行3d製圖的時候使用了UKF方法,檢視現有的tag版本,可以轉到0.1.0和0.2.0檢視,包含kalman_filter資料夾。 資料夾中的pose_tracker類檔案在mapping_3d的檔案加下有kalman_local_trajectory_builder
Ethzasl MSF原始碼閱讀(2):百川匯海
這裡有個感覺,就是百川匯海。即IMU資料和相機的訊息資料都彙集到msf_core進行處理。接上一篇, 1. 檢視IMUHandler_ROS::IMUCallback和IMUHandler_ROS::StateCallback回撥函式。 MUHandler_ROS::IMUCallback,傳入的訊息s
Cartographer原始碼閱讀(9):圖優化的前端——閉環檢測
約束計算 閉環檢測的策略:搜尋閉環,通過匹配檢測是否是閉環,採用了分支定界法。 前已經述及PoseGraph的內容,此處繼續。位姿圖類定義了pose_graph::ConstraintBuilder constraint_builder_物件。 1.ConstraintBuilder類圖 定義了S
Ethzasl MSF原始碼閱讀(3):MSF_Core和PoseMeasurement
1.MSF_Core的三個函式:ProcessIMU、ProcessExternallyPropagatedState和AddMeasurement MSF_Core維護了狀態佇列和觀測值佇列,這裡需要結合論文思考這個狀態佇列的作用。 ProcessIMU方法: 1 template<
Caffe原始碼理解2:SyncedMemory CPU和GPU間的資料同步
目錄 寫在前面 成員變數的含義及作用 構造與析構 記憶體同步管理 參考 部落格:blog.shinelee.me | 部落格園 | CSDN 寫在前面 在Caffe原始碼理解1中介紹了Blob類,其中的資料成員有 shared_ptr<SyncedMemory>
Ethzasl MSF原始碼閱讀(1):程式入口和主題訂閱
Ethz的Stephen Weiss的工作,是一個IMU鬆耦合的方法。 1.程式入口:ethzasl_msf\msf_updates\src\pose_msf\main.cpp 1 #include "pose_sensormanager.h" 2 3 int main(int argc,
2:Bitmap和Base64轉換
jpg itl print stat nbsp res param ima ati import java.io.ByteArrayOutputStream; import java.io.IOException; import android.annotation.S
第六周web作業2:sticky和fixed
指定 相同 基於用戶 之一 行為 作業2 sticky ive posit sticky基於用戶的滾動位置來定位。 粘性定位的元素是依賴於用戶的滾動,在 position:relative 與 position:fixed 定位之間切換。 在目標區域以內,它的行為就像 po
Qt學習筆記2:QMainWindow和QWidget的區別
在Qt工程建立時,Qt Widget Application模板下提供了不同的父類繼承。 這裡,主要分析一下QMainWindow和QWidget的區別。 建立工程 分別以QMainWindow和QWidget為基類建立工程,工程建立完成後,如下圖所示: Qt會自動建
C#學習篇2:過載和重寫 虛方法和抽象方法
本篇問轉載文章,僅供學習使用。。。 過載(overload): 在同一個作用域(一般指一個類)的兩個或多個方法函式名相同,引數列表不同的方法叫做過載,它們有三個特點(俗稱兩必須一可以): 方法名必須相同 引數列表必須不相同 返回值型別可以不相同 例如: publ
springmvc原始碼閱讀2--dispatcherServlet及談如何找原始碼入口
一、先找到入口: 1、先說找發: 根據配置檔案找 這個是最常見的搞法,在原始階段大多數都會使用一些配置檔案來啟動這些框架,但是隨著springboot類似的搞法的流行,這個技巧有點不在那麼起作用,其實原理還是這個。 依據j2ee的規範來找: 首先我們要搞明白兩個規範(也
筆記2.2:列表和元組
列表 1,列表:用中括號包括起來的,內部可以放任何資料,且可以用索引來取值的資料。 注意:索引從0開始。列表也能切片操作:而且還代表方向。 2,列表迴圈取出所有值: #coding=utf-8 #用for迴圈取值 namesList = ['xiaoWang','xiaoZhang
Caffe原始碼解析2:SycedMem
看到SyncedMem就知道,這是在做記憶體同步的操作。這類個類的程式碼比較少,但是作用是非常明顯的。檔案對應著syncedmem.hpp,著syncedmem.cpp 首先是兩個全域性的行內函數。如果機器是支援GPU的並且安裝了cuda,通過cudaMallocHost分配的host memory將會被p