1. 程式人生 > >什麼是自適應學習(個性化學習)?

什麼是自適應學習(個性化學習)?

快速瞭解本文:
到底什麼是自適應學習?即使用電腦科學來提高教學質量,而現今大家的嘗試還是在小範圍探索中,且只是根據答題正確與否來為學生選擇下一道題(即呈現問題1,答對了,則呈現問題2,答錯了,則呈現問題3的思路。)
又提出了現今網際網路時代,網路上的學習資料繁雜,電子書庫也是越來越多,但如何有效的使用這些網際網路資料卻是越來越突出的問題。
接著開始了Knewton的安利文,不過想法還是很有借鑑意義的,總結如下:
自適應學習應該具備的特點:

  • 學習內容動態可互動
  • 不僅需要診斷學生已掌握的知識,還要能設計個性化的學習路徑,讓學生儘可能的增加學習效率
  • 為教育工作者提供學生的學習診斷報告和相應的學習內容推薦計劃

If you’ve spent any time in the field of educational technology, you may have heard the term “adaptive learning,” or one of its many aliases: adaptive instruction, adaptive hypermedia, computer-based learning, intelligent tutoring systems, computer-based pedagogical agents…

If you’re like most people, however, the precise definition of the term(s) probably still eludes you. So the question remains: What is adaptive learning?

At the most basic level, adaptive learning is the notion that computers can improve educational outcomes. However, until recently, most adaptive learning approaches have failed to realize this promise. Early attempts were often small-scale, focusing on a limited number of students or area of interest. Most utilized systems with only the most basic kind of adaptivity (eg. “Present Question A—collect the answer—if correct, branch to Question B, if incorrect, branch to Question C.”)

Just as adaptive learning’s name evolved over time, however, so has its potential to revolutionize education.

In the past decade, many industries leveraged the Internet to improve themselves. Unfortunately, the education industry wasn’t one of them. Let’s face it: We’ve done a lousy job of harnessing technology to better educate our kids. And the educational content that has found its way to the Internet is scattered across millions of blogs, content portals, and e-book libraries—making it hard to find and effectively unusable.

With the help of new innovations in adaptive learning, however, this can finally change. Knewton’s adaptive learning platform will facilitate the tagging and organizing of all this educational material, deliver and assess learning items, and use data mining to deliver optimized learning content for each student each day. While there have been several successful adaptive learning environments for specific domains of knowledge (generally math), Knewton’s platform is unique in the breadth and scope of its approach.

Adaptive learning makes content dynamic and interactive, placing the student at the center of his or her individual learning experience. The platform monitors how the student interacts with the system and learns, leveraging the enormous quantities of data generated by a student’s online interactions with ordinary (textbook-like) and extraordinary (game- and social-media-like) content, with teachers and peers, and with the system itself. It assesses not only what a student knows now, but also determines what activities and interactions, developed by which providers, delivered in what sequence and medium, most greatly increase the possibility of that student’s academic success.

Fear of online and computer-based educational approaches often stems from a misguided belief that these approaches will reduce teacher-student face time. In fact, the opposite is true. The platform frees up classroom time, allowing teachers more time to engage students directly. Individualized student data allows for more meaningful teacher-student interactions.

Ultimately, the Knewton adaptive learning platform provides a current snapshot of the student, coupled with the diagnostic information and recommendations so critical to improvement, while there is still time to help. Forget end-of-lesson/chapter/term/year assessments that reveal deficiencies without providing information or opportunities to remediate. This information is presented while lessons are still underway—giving students and teachers the data they need to act and improve, immediately.

In about 18 months, Knewton expects to open up the platform—so that anyone can use it, for any type of content. It will be free for teachers and not-for-profits; only those who charge for their content will pay. This technology will soon power educational content all over the web—and change the way we educate our children and ourselves.

相關推薦

什麼是適應學習(個性化學習)?

快速瞭解本文: 到底什麼是自適應學習?即使用電腦科學來提高教學質量,而現今大家的嘗試還是在小範圍探索中,且只是根據答題正確與否來為學生選擇下一道題(即呈現問題1,答對了,則呈現問題2,答錯了,則呈現問題3的思路。) 又提出了現今網際網路時代,

eChars移動端適應學習筆記

位置 16px out 其中 內部 pri base cal print 有時會出現一個圖表需要同時在PC、移動端上展現的場景。這需要 ECharts 內部組件隨著容器尺寸變化而變化的能力。為了解決這個問題,ECharts 完善了組件的定位設置,並且實現了類似 CSS Me

[ZZ] 多領域視覺數據的轉換、關聯與適應學習

matching vld 性別 .science 多核 性能 調整 輸出 求解 哈工大左旺孟教授:多領域視覺數據的轉換、關聯與自適應學習 http://blog.sciencenet.cn/home.php?mod=space&uid=3291369&do

從零開始學習前端開發 — 6、CSS寬高適應

完全 content 代碼 部分 隱藏 -h 描述 tex tom 一、寬度自適應 語法:width:100%; 註: a)塊狀元素的默認寬度為100% b) 當給元素設置寬度為100%時,繼承父元素的寬度 c) 通常使用寬度自適應實現通欄效果 二、高度自適應 語法:hei

CS229 Machine Learning學習筆記:Note 12(強化學習適應控制)

inf 輸入 概念 play 化學 適應 UNC 之前 stat 強化學習的概念 在監督學習中,我們會給學習算法一個訓練集,學習算法嘗試使輸出盡可能接近訓練集給定的真實值y;訓練集中,對於每個樣本的輸入x,都有確定無疑的正確輸出y 在強化學習中,我們只會給學習算法一個獎勵函

神經網路學習(二)——適應線性神經網路

自適應線性神經網路(Adaline)和感知器的區別: 1.自適應線性神經網路的啟用函式不再採用步調函式,而是直接將樣本運算的結果(點乘)與實際結果相比較。(白話版:自適應線性神經網路的啟用函式,是一個線性函式) 2.自適應線性神經網路提出了代價函式的概念,並對其做了最小優化。基於Adalin

【IOS學習筆記】為UICollectionView設定適應螢幕寬度以及點選效果

1、設定代理 @property (weak, nonatomic) IBOutlet UICollectionView *gridview; _gridview.dataSource=self; _gridview.delegate=self; 2、實現方法 筆者使用

opencv學習筆記四十九:基於距離變換和區域性適應閾值的物件計數

案例背景:統計下圖中玉米粒的個數 方案思路:先灰度化,再二值化(基於THRESH_TRIANGLE,圖中直方圖有明顯的雙峰值),腐蝕去掉一些小雜點,距離變換,再自適應區域性閾值,膨脹連成連通域,尋找輪廓進行計數。 距離變換於1966年被學者首次提出,目前已被廣泛應

Android學習第7篇——碎片實踐,結合ListView的簡單閱讀應用,適應手機和平板

在學過了碎片(Fragment)、ListView之後,實現一個自適應手機和平板的文章閱讀應用效果圖:手機: 平板:二、實現過程:1、新建一個文章實體類Newspublic class News { private String title; private

關於“適應學習”,你不能錯過的乾貨(二)

圖片來源:pixabay本期話題:自適應評估:將測驗和評分提升到新的階段>>自適應評估的定義一直以來,測驗都被認為是檢測學生學習成果最有效的方式。因此,各學科的相關測試和測試反饋,也成為了教育教學上的重點。傳統意義上測評中,題目都是提前準備好的,所有學生在同一時間

OpenCV學習筆記-適應閾值化

自適應閾值化的函式為:AdaptiveThreshold自適應閾值方法void cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value, int

python實現《機器學習》西瓜書習題5.6適應學習率的BP改進演算法

致敬環節:https://blog.csdn.net/Snoopy_Yuan/article/details/70846554 因為太難了,我選擇直接抄,基本無改動。。。 但有點意思的是,自適應學習率的最後,計算出的錯誤率是0.013,和固定學習速率一樣,猜測原

[影象去霧](一)限制對比度的適應直方圖均衡化(CLAHE)的學習體會——影象分塊

最近研究影象去霧演算法,作為菜鳥,慢慢學習。 演算法原理參考以下兩個連結: http://www.cnblogs.com/Imageshop/archive/2013/04/07/3006334.html http://blog.csdn.net/u010839382/a

適應學習:最好的定位是輔助工具

自適應學習拼的不是簡單的程式碼或者幾個演算法,而是收集、分析、運用和維護海量的學習資料,涉及到大資料的沉澱、檢測和推薦演算法的精準性。這需要有一個頂尖的研發團隊來做,而在這其中,資料科學團隊是最重要的。資料科學團隊需要懂得貝葉斯理論、資訊理論等高階的演算法和資料分析技術,而且還要不斷地對

學習一種矩形通過css定義寬高等比例適應的方法

參考資料1:https://juejin.im/post/5b0784566fb9a07abd0e14ae 參考資料2:https://blog.csdn.net/u014607184/article/details/52661760 參考資料3:https://segmentfault.c

echarts學習總結(二):一個頁面存在多個echarts圖形,圖形適應視窗大小

如上圖所示一個頁面有兩個echarts圖形:散點圖和折線圖,如果還寫為                   myChart.setOption(option);                 window.onresize = myChart.resize; 則只有

css+html實現適應寬度的選單學習

本文是利用css和html實現自適應於文字長度選單。 實現後的效果圖,如下: 實現程式碼如下: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html>

XHTML學習筆記(3)之適應高度

#header{ MARGIN: 0px; BORDER: 0px;BACKGROUND: #ccd2de; WIDTH: 580px; HEIGHT: 60px;} #mainbox { MARGIN: 0px; WIDTH: 580px; BACKGROUND: #FFF

機器學習演算法之適應線性感知器演算法

自適應線性感知器演算法 原理推導 python實現 import numpy as np import matplotlib.pyplot as plt #隨機生成x和y, n=100, m=2 x = np.random.randn(1

沉迷系列-教育適應學習演算法

總結我接觸的關於教育自適應學習方面的演算法. 應用層面 預測學生試題表現&能力表現 診斷學生已掌握知識點 預測試題涉及知識點 試題推薦&知識點推薦 演算法彙總 傳統認知診斷教育模型 1.LLTM(線性邏輯斯蒂克特質模型)