HDU 4704 Sum 費馬小定理+快速冪
阿新 • • 發佈:2019-01-22
Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 18 Accepted Submission(s): 9
Problem Description
Sample Input 2
Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases.
Source
Recommend zhuyuanchen520 題意: 略 思路: 求 2 ^(n - 1) % mod = ? 由費馬小定理得, 2 ^ (n - 1) % p = 2 ^ [(n - 1) % (p - 1)] % p
快速冪的寫法: __int64 Quick_Pow(__int64 a, __int64 b) {#include <iostream> #include<stdio.h> #include<string.h> #define MOD 1000000007 using namespace std; char s[10000005]; __int64 fun(char *s,int m) { __int64 ret=0,e=1; for(int i=strlen(s)-1;i>=0;i--) { ret=((s[i]-'0')*e+ret)%m; e=e*10%m; } return ret; } __int64 pow_mod(__int64 a,__int64 n,__int64 m) { if(n==1) return(a%m); __int64 x=pow_mod(a,n/2,m); __int64 ans=x*x%m; if(n%2==1) ans=ans*a%m; return ans; } int main() { __int64 a,b,ans; int i; while(~scanf("%s",s)) { int t,len=strlen(s); t=len-1; while(s[t]=='0') { s[t]='9'; t--; } s[t]=s[t]-1; //printf("*%s\n",s); b=fun(s,MOD-1); //printf("%I64d\n",b); if(b==0) printf("1\n"); else printf("%I64d\n",pow_mod(2,b,MOD)); } return 0; }
__int64 res = 1;
while(b) {
if(b & 1)
res = (res * a) % mod;
b /= 2;
a = (a * a) % mod;
}
return res % mod;
}