1. 程式人生 > >(hdu 2588 gcd)

(hdu 2588 gcd)

題目

Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.

Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.

Output
For each test case,output the answer on a single line.

Sample Input
3
1 1
10 2
10000 72

Sample Output
1
6
260

題目的大致意思是:給定n和m,求在所有小於n的正整數中,有幾個和n的gcd大於等於m。多組資料

題解

     - 如果gcd(a,b)=c   那麼gcd(a/c,b/c)=1
     - 此時求的是對於一個數x,首先它要大於m,那麼只需要gcd(n,x*q)=x,q是正整數且x*q<=n
     - gcd(n,x*q)=x等價於gcd(n/x,q)=1
     - 因此只需要用尤拉函式算出與n/x互質的數有多少即可,同時可以避免重複

程式碼

#include<iostream>
#include<cstdio>
#include<cstring> #include<algorithm> using namespace std; int T; int n,m; int ans; int euler(int x){//計算某個數的尤拉函式值 int tmp=1,i; for(i=2;i*i<=x;i++) { if(x%i==0) { x/=i;tmp*=i-1; while(x%i==0) {x/=i;tmp*=i;} } } if(x>1) tmp*=x-1; return tmp; } int main(){ scanf("%d",&T); while(T--){ ans=0; scanf("%d%d",&n,&m); for(int i=1;i*i<=n;++i){ if(n%i==0){ if(i>=m) ans+=euler(n/i); if(i*i!=n&&n/i>=m) ans+=euler(i);//兩步一起寫可以少迴圈。i*i!=n 用於判重 } } printf("%d\n",ans); } return 0; }