深度學習之mnist識別-CNN
阿新 • • 發佈:2019-01-22
使用tensorflow框架和python,學習實現簡單的CNN網路,並進行調參,程式碼如下:
#! /usr/bin/python # -*- coding:utf-8 -*- import tensorflow as tf from tinyenv.flags import flags from tensorflow.examples.tutorials.mnist import input_data FLAGS = None def train(): #讀取資料 mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot = True, fake_data = FLAGS.fake_data) sess = tf.InteractiveSession()#可在執行圖時插入計算圖 with tf.name_scope('input'):#名稱空間函式,輸入 x = tf.placeholder(tf.float32,[None,784],name = 'x-input') y_ = tf.placeholder(tf.float32,[None,10],name = 'y-input') with tf.name_scope('input_reshape'):#reshape image_shaped_input = tf.reshape(x,[-1,28,28,1]) tf.summary.image('input',image_shaped_input,10)#記錄 視覺化 def weight_variable(shape): #權重變數,並初始化 initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): #偏置變數,並初始化 initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def variable_summaries(var):#視覺化記錄 with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean)#scalar顯示標量資訊 with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) #顯示訓練過程中變數的分佈情況 def nn_layer(input_tensor,input_dim,output_dim,layer_name,act = tf.nn.relu): #layer_name設定 with tf.name_scope(layer_name):#權重變數,並記錄 with tf.name_scope('weight'): weights = weight_variable([input_dim,output_dim]) variable_summaries(weights) with tf.name_scope('biases'):#偏置 biases = weight_variable([output_dim]) variable_summaries(biases) with tf.name_scope('wx+b'):#xw+b preactivate = tf.matmul(input_tensor,weights) + biases tf.summary.histogram('pre_activations', preactivate) activations = act(preactivate, name='activation')#relu啟用 tf.summary.histogram('activations', activations) return activations hidden1 = nn_layer(x,784,500,'layer1')#隱層 with tf.name_scope('dropout'):#定義dropout keep_prob = tf.placeholder(tf.float32) droped = tf.nn.dropout(hidden1,keep_prob) y = nn_layer(droped,500,10,'layer2',act = tf.identity)#輸出層 with tf.name_scope('cross_entropy'):#交叉熵 diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y) with tf.name_scope('total'): cross_entropy = tf.reduce_mean(diff) tf.summary.scalar('cross_entropy', cross_entropy) with tf.name_scope('train'):#train train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( cross_entropy) with tf.name_scope('accuracy'):#正確率 with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test') tf.global_variables_initializer().run() def feed_dict(train):#feed_dict if train or FLAGS.fake_data: xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data) k = FLAGS.dropout else: xs, ys = mnist.test.images, mnist.test.labels k = 1.0 return {x: xs, y_: ys, keep_prob: k} for i in range(FLAGS.iterations): if i % 10 == 0: # Record summaries and test-set accuracy summary, acc = sess.run( [merged, accuracy], feed_dict=feed_dict(False)) test_writer.add_summary(summary, i) print('Accuracy at step %s: %s' % (i, acc)) else: if i % 100 == 99: run_options = tf.RunOptions( trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True), options=run_options, run_metadata=run_metadata) train_writer.add_run_metadata(run_metadata, 'step%03d' % i) train_writer.add_summary(summary, i) else: summary, _ = sess.run( [merged, train_step], feed_dict=feed_dict(True)) train_writer.add_summary(summary, i) train_writer.close() test_writer.close() def main(_): if tf.gfile.Exists(FLAGS.log_dir): tf.gfile.DeleteRecursively(FLAGS.log_dir) tf.gfile.MakeDirs(FLAGS.log_dir) train() if __name__ == '__main__': FLAGS = flags() tf.app.run(main=main, argv=[sys.argv[0]])