tensorflow批量訓練
阿新 • • 發佈:2019-01-23
學習了一下tensorflow傳入批量資料並且訓練的方法。
程式碼如下:
視覺化結果:mport matplotlib.pyplot as plt import numpy as np import tensorflow as tf sess = tf.Session() batch_size = 20 x_vals = np.random.normal(1,0.1,100) y_vals = np.repeat(10.,100) x_data = tf.placeholder(shape=[None,1],dtype=tf.float32) y_target = tf.placeholder(shape=[None,1],dtype=tf.float32) A = tf.Variable(tf.random_normal(shape=[1,1])) my_output = tf.matmul(x_data,A) loss = tf.reduce_mean(tf.square(my_output - y_target)) my_opt = tf.train.GradientDescentOptimizer(0.02) train_step = my_opt.minimize(loss) init = tf.global_variables_initializer() #!!!A必須得初始化!!! sess.run(init) loss_batch = [] loss_stochastic = [] for i in range(100): rand_index1 = np.random.choice(100,size=batch_size) rand_x1 = np.transpose([x_vals[rand_index1]]) rand_y1 = np.transpose([y_vals[rand_index1]]) sess.run(train_step, feed_dict={x_data: rand_x1, y_target: rand_y1}) if((i+1)%5 == 0): print('Step1# '+str(i+1)+' A1 = '+str(sess.run(A))) temp_loss = sess.run(loss,feed_dict={x_data:rand_x1,y_target:rand_y1}) print('Loss1 = '+str(temp_loss)) loss_batch.append(temp_loss) rand_index2 = np.random.choice(100) rand_x2 = [[x_vals[rand_index2]]] rand_y2 = [[y_vals[rand_index2]]] sess.run(train_step, feed_dict={x_data: rand_x2, y_target: rand_y2}) if ((i + 1) % 5 == 0): print('Normal_step2#' + str(i + 1) + ' A2 = ' + str(sess.run(A))) temp_loss = sess.run(loss, feed_dict={x_data: rand_x2, y_target: rand_y2}) print('Normal_loss2 = ' + str(temp_loss)) loss_stochastic.append(temp_loss) plt.plot(range(0,100,5),loss_stochastic,'b-',label='Stomastic Loss') plt.plot(range(0,100,5),loss_batch,'r--',label='Batch Loss(size=20)') plt.legend() #將label顯示在上面 plt.show()