南京邀請賽重現
阿新 • • 發佈:2019-01-23
只做了四道水題
A
ans = (m/n)ans + avg
注意m == n 和 avg == 0.0的情況
#include <set> #include <cmath> #include <queue> #include <stack> #include <string> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const double PI = acos(-1.0); template <class T> inline T MAX(T a, T b){if (a > b) return a;return b;} template <class T> inline T MIN(T a, T b){if (a < b) return a;return b;} const int N = 111; const int M = 11111; const LL MOD = 1000000007LL; const int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1}; const int INF = 0x3f3f3f3f; int a[222]; int main() { int n, m; while (scanf("%d", &n) != EOF) { int i, j , k, sum = 0; double ans; for (i = 0; i < n; ++i) { scanf("%d", &a[i]); sum += a[i]; } scanf("%d", &m); for (i = 0; i < m; ++i) scanf("%d", &k); if (sum == 0) { printf("0.00\n"); } else if (n == m) { printf("inf\n"); } else { ans = sum; ans = ans / (n - m); printf("%.2lf\n", ans); } } return 0; }
C 統計進位,只要預處理1-100000000的字首和中每個位有多少個一,然後每次詢問b-(a-1)再統計即可
#include <set> #include <cmath> #include <queue> #include <stack> #include <string> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const double PI = acos(-1.0); template <class T> inline T MAX(T a, T b){if (a > b) return a;return b;} template <class T> inline T MIN(T a, T b){if (a < b) return a;return b;} const int N = 111; const int M = 11111; const LL MOD = 1000000007LL; const int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1}; const int INF = 0x3f3f3f3f; void solve(LL cnt[], LL num) { LL i, j, k, bas = 1, lim = 0; for (i = 0; i <= 64; ++i) { if (num <= lim) break; cnt[i] = (num - lim) / (bas * 2) * bas; if ((num - lim) % (bas * 2) >= bas) cnt[i] = cnt[i] + bas; else cnt[i] = cnt[i] + ((num-lim) %(bas * 2)); bas *= 2; lim = bas - 1; } } LL c1[100], c2[100]; int main() { LL a, b; while (scanf("%I64d%I64d", &a, &b) != EOF) { memset(c1, 0, sizeof(c1));memset(c2, 0, sizeof(c2)); solve(c1, a - 1); solve(c2, b); LL tot = 0, ans = 0; // for (int i = 0; i <= 10; ++i) // printf("%d ", c1[i]); // printf("\n"); // for (int i = 0; i <= 10; ++i) // printf("%d ", c2[i]); // printf("\n"); for (int i = 0; i <= 64; ++i) c2[i] = c2[i] - c1[i]; for (int i = 0; i <= 64; ++i) { ans = ans + c2[i] / 2; c2[i + 1] += c2[i] / 2; } printf("%I64d\n", ans); } return 0; }
H 統計哪個數字重複
#include <set> #include <cmath> #include <queue> #include <stack> #include <string> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const double PI = acos(-1.0); template <class T> inline T MAX(T a, T b){if (a > b) return a;return b;} template <class T> inline T MIN(T a, T b){if (a < b) return a;return b;} const int N = 111; const int M = 11111; const LL MOD = 1000000007LL; const int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1}; const int INF = 0x3f3f3f3f; int a[1111]; int main() { int n; while (scanf("%d", &n) != EOF) { int i, x, t; memset(a, 0, sizeof(a)); for (i = 0; i <= n; ++i) { scanf("%d", &x); if (a[x]) t = x; a[x]++; } printf("%d\n", t); } return 0; }
K
列舉兩個區間的X的gcd的倍數在不在 兩個區間只差的區間內,【Z[j]-Y[i],Y[j] - Z[i]】
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const double PI = acos(-1.0);
template <class T> inline T MAX(T a, T b){if (a > b) return a;return b;}
template <class T> inline T MIN(T a, T b){if (a < b) return a;return b;}
const int N = 111;
const int M = 11111;
const LL MOD = 1000000007LL;
const int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1};
const int INF = 0x3f3f3f3f;
int X[1111], Y[1111], Z[1111];
inline int gcd(int a, int b)
{
if (!b) return a;
return gcd(b, a % b);
}
bool check(int i, int j)
{
if (Z[i] < Y[j] || Y[i] > Z[j])
{
int k;
int d = gcd(X[i], X[j]);
if (Z[i] > Z[j]) {k = i; i = j; j = k;}
int l, r;
l = Y[j] - Z[i]; r = Z[j] - Y[i];
// printf("%d %d %d\n", d, l, r);
if (l % d == 0 || r % d == 0)
return true;
else
return l / d != r / d;
}
return true;
}
int main()
{
int n;
while (scanf("%d", &n) != EOF)
{
int i, j, k;
for (i = 0; i < n; ++i)
scanf("%d%d%d", &X[i], &Y[i], &Z[i]);
bool flag = true;
for (i = 0; i < n; ++i)
for (j = i + 1; j < n; ++j)
{
if (check(i, j))
{
flag = false;
break;
}
}
if (flag) printf("Can Take off\n");
else printf("Cannot Take off\n");
}
return 0;
}